Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130847

RESUMO

Due to electrical features of the tissue, such as impedance, which have a significant impact on irreversible electroporation (IRE) function, the administration of glucose solution 5% (GS5%) through the hepatic artery would focus IRE on scattered liver tumors. By creating a differential impedance between healthy and tumor tissue. This study aimed to determine the effects of the GS5% protocol on healthy liver tissue and its safety. 21 male Athymic nude rats Hsd: RH-Foxn1mu were used in the study. Animals were split into two groups. In group 1, a continuous infusion through the gastroduodenal artery of GS5% was performed to measure the impedance with a dose of 0.008 mL/g for 16 min. In group 2, the animals were divided into two subgroups for infusions of GS5%. Group 2.1, at 0.008 mL/g for 16 min. Group 2.2 at 0.03 mL/g for 4 min. Blood samples were collected after anesthesia has been induced. The second sample, after catheterization of the artery, and the third after the GS5% infusion. All the animals were sacrificed to collect histological samples. The survival rate during the experiment was 100%. A considerable impact on the impedance of the tissue was noticed, on average up to 4.31 times more than the baseline, and no side effects were observed after GS5% infusion. In conclusion, impedance alteration by Glucose solution infusion may focus IRE on tumor tissue and decrease IRE's effects on healthy tissue.


Assuntos
Técnicas de Ablação , Neoplasias Hepáticas , Animais , Masculino , Artéria Hepática , Neoplasias Hepáticas/etiologia , Técnicas de Ablação/efeitos adversos , Eletroporação/métodos , Glucose
2.
Front Vet Sci ; 9: 1014648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406062

RESUMO

Irreversible electroporation (IRE) is a method of non-thermal focal tissue ablation characterized by irreversibly permeabilizing the cell membranes while preserving the extracellular matrix. This study aimed to investigate tissue remodeling after IRE in a porcine model, especially focusing on the extracellular matrix and hepatic stellate cells. IRE ablation was performed on 11 female pigs at 2,000 V/cm electric field strength using a versatile high-voltage generator and 3 cm diameter parallel-plate electrodes. The treated lobes were removed during surgery at 1, 3, 7, 14, and 21 days after IRE. Tissue remodeling and regeneration were assessed by histopathology and immunohistochemistry. Throughout the treated area, IRE led to extensive necrosis with intact collagenous structures evident until day 1. From then on, the necrosis progressively diminished while reparative tissue gradually increased. During this process, the reticulin framework and the septal fibrillar collagen remained in the necrotic foci until they were invaded by the reparative tissue. The reparative tissue was characterized by a massive proliferation of myofibroblast-like cells accompanied by a complete disorganization of the extracellular matrix with the disappearance of hepatic architecture. Hepatic stellate cell markers were associated with the proliferation of myofibroblast-like cells and the reorganization of the extracellular matrix. Between 2 and 3 weeks after IRE, the lobular architecture was almost completely regenerated. The events described in the present study show that IRE may be a valid model to study the mechanisms underlying liver regeneration after extensive acute injury.

3.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498417

RESUMO

Classical application of electroporation is carried out by using fixed protocols that do not clearly assure the complete ablation of the desired tissue. Nowadays, new methods that pursue the control of the treatment by studying the change in impedance during the applied pulses as a function of the electric field are being developed. These types of control seek to carry out the treatment in the fastest way, decreasing undesired effects and treatment time while ensuring the proper tumour ablation. The objective of this research is to determine the state of the treatment by continuously monitoring the impedance by using a novel versatile high-voltage generator and sensor system. To study the impedance dynamics in real time, the use of pulses of reduced voltage, below the threshold of reversible electroporation, is tested to characterise the state-of-the-treatment without interfering with it. With this purpose, a generator that provides both low voltage for sense tissue changes and high voltage for irreversible electroporation (IRE) was developed. In conclusion, the characterisation of the effects of electroporation in vegetal tissue, combined with the real-time monitoring of the state-of-the-treatment, will enable the provision of safer and more effective treatments.


Assuntos
Impedância Elétrica , Eletroporação , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA