Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; : e17460, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963031

RESUMO

Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.

2.
Mol Microbiol ; 121(6): 1262-1272, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38830767

RESUMO

Emerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon by Ixodes ticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard-tick-Borrelia interactions and highlights the importance of an eco-immunology lens for zoonotic pathogen transmission studies.


Assuntos
Ixodes , Lagartos , Doença de Lyme , Animais , Lagartos/microbiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Ixodes/microbiologia , Humanos , Grupo Borrelia Burgdorferi/fisiologia , Grupo Borrelia Burgdorferi/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiologia
3.
Environ Entomol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850569

RESUMO

The effect of the 20th-century functional extinction of the American Chestnut (Fagaceae: Castanea dentata (Marshall) Borkh) on associated herbivorous insects is unknown. These insects include leafminers that spend at least part of their larval phase feeding between the epidermises of leaves. We surveyed leafminers on C. dentata, nonnative Castanea spp., and hybrids on Long Island, NY. We found 10 leafminer species feeding on Castanea spp. A first New York State record was documented for Stigmella castaneaefoliella (Chambers) (Lepidoptera: Nepticulidae). New host records are established for 6 lepidopterans, including a new host genus for Phyllonorycter basistrigella (Clemens) (Lepidoptera: Gracillariidae). We found no significant differences in the mean intensity of S. castaneaefoliella leaf mines on native and nonnative Castanea spp.; however, our sample size was small. Thus, we guardedly conclude that nonnative Castanea spp. can serve as refugia for C. dentata leafminers native to North America while acknowledging that the extent to which nonnative species are utilized requires further investigation.

4.
J Med Entomol ; 59(1): 267-272, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34718657

RESUMO

Questing behavior and host associations of immature blacklegged ticks, Ixodes scapularis Say, from the southeastern United States are known to differ from those in the north. To elucidate these relationships we describe host associations of larval and nymphal I. scapularis from 8 lizard species sampled from 5 sites in the southeastern U.S. Larvae and nymphs attached in greater numbers to larger lizards than to smaller lizards, with differential levels of attachment to different lizard species. Blacklegged ticks are generally attached to skinks of the genus Plestiodon in greater numbers per unit lizard weight than to anoles (Anolis) or fence lizards (Sceloporus). The broad-headed skink, Plestiodon laticeps (Schneider), was a particularly important host for immature I. scapularis in our study and in several previous studies of tick-host associations in the southeast. Blacklegged ticks show selective attachment to Plestiodon lizard hosts in the southeast, but whether this results from behavioral host preferences or from ecological factors such as timing or microhabitat distributions of tick questing and host activity remains to be determined.


Assuntos
Ixodes , Lagartos/parasitologia , Animais , Vetores Artrópodes/classificação , Biodiversidade , Ecossistema , Interações Hospedeiro-Parasita , Larva , Ninfa , Densidade Demográfica , Estações do Ano , Sudeste dos Estados Unidos , Especificidade da Espécie , Infestações por Carrapato
6.
PLoS Biol ; 19(1): e3001066, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507921

RESUMO

Lyme disease is common in the northeastern United States, but rare in the southeast, even though the tick vector is found in both regions. Infection prevalence of Lyme spirochetes in host-seeking ticks, an important component to the risk of Lyme disease, is also high in the northeast and northern midwest, but declines sharply in the south. As ticks must acquire Lyme spirochetes from infected vertebrate hosts, the role of wildlife species composition on Lyme disease risk has been a topic of lively academic discussion. We compared tick-vertebrate host interactions using standardized sampling methods among 8 sites scattered throughout the eastern US. Geographical trends in diversity of tick hosts are gradual and do not match the sharp decline in prevalence at southern sites, but tick-host associations show a clear shift from mammals in the north to reptiles in the south. Tick infection prevalence declines north to south largely because of high tick infestation of efficient spirochete reservoir hosts (rodents and shrews) in the north but not in the south. Minimal infestation of small mammals in the south results from strong selective attachment to lizards such as skinks (which are inefficient reservoirs for Lyme spirochetes) in the southern states. Selective host choice, along with latitudinal differences in tick host-seeking behavior and variations in tick densities, explains the geographic pattern of Lyme disease in the eastern US.


Assuntos
Vetores de Doenças , Comportamento de Busca por Hospedeiro/fisiologia , Doença de Lyme/epidemiologia , Animais , Animais Selvagens , Borrelia burgdorferi/fisiologia , Clima , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/estatística & dados numéricos , Vetores de Doenças/classificação , Geografia , Especificidade de Hospedeiro/fisiologia , Humanos , Lagartos/microbiologia , Doença de Lyme/transmissão , Camundongos , Densidade Demográfica , Prevalência , Ratos , Sciuridae/microbiologia , Musaranhos/microbiologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/microbiologia , Infestações por Carrapato/transmissão , Carrapatos/microbiologia , Estados Unidos/epidemiologia
7.
Curr Biol ; 30(12): R721-R735, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32574638

RESUMO

Turtles and tortoises (chelonians) have been integral components of global ecosystems for about 220 million years and have played important roles in human culture for at least 400,000 years. The chelonian shell is a remarkable evolutionary adaptation, facilitating success in terrestrial, freshwater and marine ecosystems. Today, more than half of the 360 living species and 482 total taxa (species and subspecies combined) are threatened with extinction. This places chelonians among the groups with the highest extinction risk of any sizeable vertebrate group. Turtle populations are declining rapidly due to habitat loss, consumption by humans for food and traditional medicines and collection for the international pet trade. Many taxa could become extinct in this century. Here, we examine survival threats to turtles and tortoises and discuss the interventions that will be needed to prevent widespread extinction in this group in coming decades.


Assuntos
Conservação dos Recursos Naturais , Tartarugas , Animais , Espécies em Perigo de Extinção , Extinção Biológica , Dinâmica Populacional
8.
J Med Entomol ; 55(6): 1386-1401, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29986046

RESUMO

The seasonal activity pattern of immature Ixodes scapularis Say (Acari: Ixodidae) varies geographically in the United States, which may affect the efficiency of transmission cycles of pathogens transmitted by this species. To study the factors that determine seasonality, a multiyear study at seven sites across the geographic range of I. scapularis systematically collected questing ticks by flagging/dragging, and feeding ticks by capture of their hosts. The observed phenology patterns were consistent with previous studies reporting geographic variation in seasonal tick activity. Predictions of seasonal activity for each site were obtained from an I. scapularis simulation model calibrated using contemporaneous weather data. A range of scenarios for life-cycle processes-including different regimes of temperature-independent behavioral and developmental diapause, variations in temperature-development rate relationships, and temperature-dependent tick activity-were used in model formulations. These formulations produced a range of simulations of seasonal activity for each site and were compared against the field observed tick data using negative binomial regression models. Best fit scenarios were chosen for each site on the basis of Akaike's information criterion and regression model parameters. This analysis suggests that temperature-independent diapause mechanisms explain some key observed variations in I. scapularis seasonality, and are responsible in part for geographic variations in I. scapularis seasonality in the United States. However, diapause appears to operate in idiosyncratic ways in different regions of the United States, so further studies on populations in different regions will be needed to enable predictive modeling of climatic and climate change effects on I. scapularis seasonal activity and pathogen transmission.


Assuntos
Vetores Aracnídeos/crescimento & desenvolvimento , Diapausa de Inseto , Ixodes/crescimento & desenvolvimento , Animais , Doença de Lyme/transmissão , Modelos Biológicos , Estações do Ano , Estados Unidos
9.
Toxicon ; 129: 36-43, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28209476

RESUMO

Diamondback terrapins (Malaclemys terrapin) are a threatened or endangered species in much of their range along the U.S. Atlantic and Gulf coasts. Over an approximately three-week period from late April to mid-May 2015, hundreds of adult diamondback terrapins were found dead on the shores of Flanders Bay, Long Island, New York, USA. Concurrent with the mortality event, elevated densities of the paralytic shellfish toxin (PST)-producing dinoflagellate, Alexandrium fundyense (>104 cells L-1) and high levels of PST in bivalves (maximal levels = 540 µg STX eq. 100 g-1 shellfish tissue) were observed in the Flanders Bay region, resulting in shellfish bed closures in regional tributaries. Gross and histologic postmortem examinations of terrapins revealed no physical trauma to individuals or a common, underlying disease process to explain the deaths. PST compounds (0.2-12.5 µg STX eq. 100 g-1) were present in various M. terrapin tissues collected over the duration of the mortality event. High-throughput sequencing revealed that the ribbed mussel (Geukensia demissa, a PST vector) was present in the gastrointestinal tracks of all terrapin samples tested. While the potential of PST to cause mortality in chelonians has not been well-characterized, in the absence of other significant findings from necropsies and pathological analyses, we provide evidence that PST in shellfish was likely high enough to cause or contribute to the mortality in these small (<2.0 kg) animals.


Assuntos
Doenças dos Animais/mortalidade , Dinoflagellida/química , Proliferação Nociva de Algas , Toxinas Marinhas/toxicidade , Intoxicação por Frutos do Mar/veterinária , Tartarugas , Doenças dos Animais/induzido quimicamente , Animais , Baías/química , Bivalves , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , New York , Saxitoxina/toxicidade , Frutos do Mar
10.
J Parasitol ; 102(4): 410-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27022856

RESUMO

: Life history stages of Pleurogonius malaclemys were investigated in wild populations of the eastern mudsnail ( Ilyanassa obsoleta ) and diamondback terrapin ( Malaclemys terrapin ) in New Jersey, New York, and Rhode Island between 2011 and 2015, and laboratory experiments investigating the settling preference of metacercarial cysts of P. malaclemys were conducted. Cysts of P. malaclemys were found on mudsnails on the north and south shores of Long Island, New York and in Rhode Island, approximately 280 km farther north than previously reported. The cysts were found on mudsnails year round, but cyst prevalence increased during the summer months, reaching maximum levels (∼70%) in November. Nearly 58% of Jamaica Bay, New York mudsnails had cysts; mean intensities were 2.63 cysts/mudsnail. Although cyst prevalence was high, only 11 mudsnails (0.28%) were found to have the internal redial stages of P. malaclemys, the stage of infection preceding external cysts. In addition to mudsnails, P. malaclemys could encyst on other biological substrates, including common terrapin prey species. The majority of wild adult terrapins from Stone Harbor, New Jersey were infected with the adult stage of P. malaclemys (80.30%, x¯ = 36.36 trematodes/terrapin, n = 66). Juvenile terrapins were experimentally infected with P. malaclemys and on average 22.5% of the consumed cysts successfully developed into adult trematodes. Studies on the life cycle of P. malaclemys are important because previous research has shown that the frequency of cysts of P. malaclemys on mudsnails can be used as an indirect measure of terrapin abundance.


Assuntos
Caramujos/parasitologia , Trematódeos/crescimento & desenvolvimento , Infecções por Trematódeos/veterinária , Tartarugas/parasitologia , Animais , Cercárias/crescimento & desenvolvimento , Feminino , Masculino , Metacercárias/crescimento & desenvolvimento , New Jersey/epidemiologia , New York/epidemiologia , Prevalência , Rhode Island/epidemiologia , Trematódeos/classificação , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/transmissão
11.
J Parasitol ; 100(5): 578-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24871138

RESUMO

The eastern fence lizard, Sceloporus undulatus , is widely distributed in eastern and central North America, ranging through areas with high levels of Lyme disease, as well as areas where Lyme disease is rare or absent. We studied the potential role of S. undulatus in transmission dynamics of Lyme spirochetes by sampling ticks from a variety of natural hosts at field sites in central New Jersey, and by testing the reservoir competence of S. undulatus for Borrelia burgdorferi in the laboratory. The infestation rate of ticks on fence lizards was extremely low (prevalence = 0.087, n = 23) compared to that on white-footed mice and other small mammals (prevalence = 0.53, n = 140). Of 159 nymphs that had fed as larvae on lizards that had previously been exposed to infected nymphs, none was infected with B. burgdorferi , compared with 79.9% of 209 nymphs that had fed as larvae on infected control mice. Simulations suggest that changes in the numbers of fence lizards in a natural habitat would have little effect on the infection rate of nymphal ticks with Lyme spirochetes. We conclude that in central New Jersey, S. undulatus plays a minimal role in the enzootic transmission cycle of Lyme spirochetes.


Assuntos
Borrelia burgdorferi/isolamento & purificação , Ixodes/microbiologia , Lagartos/parasitologia , Doença de Lyme/transmissão , Infestações por Carrapato/veterinária , Animais , Reservatórios de Doenças , Feminino , Florestas , Ixodes/crescimento & desenvolvimento , Masculino , New Jersey , Peromyscus/parasitologia , Infestações por Carrapato/complicações , Infestações por Carrapato/microbiologia
12.
Chromosome Res ; 14(2): 139-50, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16544188

RESUMO

Heteromorphic sex chromosomes are rare in turtles, having been described in only four species. Like many turtle species, the Australian freshwater turtle Chelodina longicollis has genetic sex determination, but no distinguishable (heteromorphic) sex chromosomes were identified in a previous karyotyping study. We used comparative genomic hybridization (CGH) to show that C. longicollis has an XX/XY system of chromosomal sex determination, involving a pair of microchromosomes. C-banding and reverse fluorescent staining also distinguished microchromosomes with different banding patterns in males and females in approximately 70% cells examined. GTG-banding did not reveal any heteromorphic chromosomes, and no replication asynchrony on the X or Y microchromosomes was observed using replication banding. We conclude that there is a very small sequence difference between X and Y chromosomes in this species, a difference that is consistently detectable only by high-resolution molecular cytogenetic techniques, such as CGH. This is the first time a pair of microchromosomes has been identified as the sex chromosomes in a turtle species.


Assuntos
Cromossomos Sexuais/genética , Processos de Determinação Sexual , Tartarugas/genética , Animais , Bandeamento Cromossômico , Feminino , Cariotipagem , Masculino , Hibridização de Ácido Nucleico , Diferenciação Sexual , Coloração e Rotulagem
13.
Evolution ; 57(1): 119-28, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12643572

RESUMO

The painted turtle, Chrysemys picta, is currently recognized as a continentally distributed polytypic species, ranging across North America from southern Canada to extreme northern Mexico. We analyzed variation in the rapidly evolving mitochondrial control region (CR) in 241 turtles from 117 localities across this range to examine whether the painted turtle represents a continentally distributed species based on molecular analysis. We found strong support for the novel hypothesis that C. p. dorsalis is the sister group to all remaining Chrysemys, with the remaining Chrysemys falling into a single, extremely wide-ranging and genetically undifferentiated species. Given our goal of an evolutionarily accurate taxonomy, we propose that two evolutionary lineages be recognized as species within Chrysemys: C. dorsalis (Agassiz 1857) in the southern Mississippi drainage region, and C. picta (Schneider 1783) from the rest of the range of the genus. Neither molecular nor recent morphological analyses argue for the hybrid origin of C. p. marginata as previously proposed. Within C. picta, we find evidence of at least two independent range expansions into previously glaciated regions of North America, one into New England and the other into the upper Midwest. We further find evidence of a massive extinction/recolonization event across the Great Plains/Rocky Mountain region encompassing over half the continental United States. The timing and extent of this colonization is consistent with a recently proposed regional aridification as the Laurentide ice sheets receded approximately 14,000 years ago, and we tentatively propose this paleoclimatological event as a major factor shaping genetic variation in Chrysemys.


Assuntos
Geografia , Filogenia , Tartarugas/genética , Animais , Sequência de Bases , Primers do DNA , Tartarugas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...