RESUMO
Atomically precise ultradoping of silicon is possible with atomic resists, area-selective surface chemistry, and a limited set of hydride and halide precursor molecules, in a process known as atomic precision advanced manufacturing (APAM). It is desirable to expand this set of precursors to include dopants with organic functional groups and here we consider aluminium alkyls, to expand the applicability of APAM. We explore the impurity content and selectivity that results from using trimethyl aluminium and triethyl aluminium precursors on Si(001) to ultradope with aluminium through a hydrogen mask. Comparison of the methylated and ethylated precursors helps us understand the impact of hydrocarbon ligand selection on incorporation surface chemistry. Combining scanning tunneling microscopy and density functional theory calculations, we assess the limitations of both classes of precursor and extract general principles relevant to each.
RESUMO
We investigate carrier transport in silicon-germanium nanowires with an axial p-n junction doping profile by fabricating these wires into transistors that feature separate top gates over each doping segment. By independently biasing each gate, carrier concentrations in the n- and p-side of the wire can be modulated. For these devices, which were fabricated with nickel source-drain electrical contacts, holes are the dominant charge carrier, with more favorable hole injection occurring on the p-side contact. Channel current exhibits greater sensitivity to the n-side gate, and in the reverse biased source-drain configuration, current is limited by the nickel/n-side Schottky contact.
RESUMO
We show that a scanning capacitance microscope (SCM) can image buried delta-doped donor nanostructures fabricated in Si via a recently developed atomic-precision scanning tunneling microscopy (STM) lithography technique. A critical challenge in completing atomic-precision nanoelectronic devices is to accurately align mesoscopic metal contacts to the STM defined nanostructures. Utilizing the SCMs ability to image buried dopant nanostructures, we have developed a technique by which we are able to position metal electrodes on the surface to form contacts to underlying STM fabricated donor nanostructures with a measured accuracy of 300 nm. Low temperature (T = 4 K) transport measurements confirm successful placement of the contacts to the donor nanostructures.
RESUMO
Using scanning tunneling microscopy movies, we directly observe individual embedded Ge atoms to be mobile within the Si(100)-(2x1)-Ge surface at temperatures as low as 90 degrees C. We demonstrate that Ge atoms move by exchange diffusion with (1) adsorbed monomers and (2) individual constituent atoms of adsorbed dimers. Our observations are consistent with recent density-functional theory calculations, which give the atomistic pathways and energetic barriers for both exchange mechanisms. We find that neither adsorbed monomers nor dimers can diffuse more than a few nanometers between exchange events, illustrating how Ge diffusion and intermixing are intimately coupled at the nanoscale on the Si(100) surface.
RESUMO
Using low-energy electron microscopy, we measure the diffusion of Pd into bulk Cu at the Cu(100) surface. Interdiffusion is tracked by measuring the dissolution of the Cu(100)-c(2 × 2)-Pd surface alloy during annealing (T>240 °C). The activation barrier for Pd diffusion from the surface alloy into the bulk is determined to be (1.8 ± 0.6) eV. During annealing, we observe the growth of a new layer of Cu near step edges. Under this new Cu layer, dilute Pd remaining near the surface develops a layered structure similar to the Cu(3)Pd L 1(2) bulk alloy phase.
RESUMO
Using scanning tunneling microscopy, we determine that the one-dimensional diffusion of Si adatoms along the Si(111)-(5 x 2)-Au surface reconstruction occurs by a defect-mediated mechanism. Distinctive diffusion statistics, especially correlations between sequential adatom displacements, imply that the displacements are triggered by an interaction with a defect that is localized to the adatom. The defect is intrinsic and thermally activated. The measured diffusion statistics are modeled accurately by a Monte Carlo simulation. The measured adatom diffusion activation barrier is 1.24 +/- 0.08 eV.
RESUMO
The case history of a suicide due to 120 stab wounds of the chest is presented. The victim was a 41 years old man with a paranoid-hallucinative psychosis. The problem to distinguish homicides and suicides is discussed by the well-known criminalistic and forensic-medical criterias. Induced by this very unusual case the autopsy material with stab wounds was analyzed retrospectively (n = 246, out of about 14,000 autopsies at the Institut of Forensic Medicine in Hamburg). Cases with more than 40 single lesions are normally homicides. However, the pattern of the injuries is more important than the number--especially in doubtful cases.