Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 160, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252281

RESUMO

Virus-like particles (VLPs) are nanometric structures composed of structural components of virions, keeping most of the cellular recognition and internalization properties, but are non-infective as they are deprived of their genetic material. VLPs have been a versatile platform for developing vaccines by carrying their own or heterologous antigenic epitopes. Moreover, VLPs can also be used as nanovessels for encapsulating molecules with therapeutic applications, like enzymes, nucleic acids, and drugs. Parvovirus B19 (B19V) VLPs can be self-assembled in vitro from the denatured major viral particle protein VP2 by equilibrium dialysis. Despite its fair productivity, this process is currently a time-consuming task. Affinity chromatography is used as an efficient step for concentration and purification, but it is only sometimes seen as a method that facilitates the oligomerization of proteins. In this research, we report a novel approach for the in vitro assembly of B19V VLPs through the immobilization of the denatured VP2 into an immobilized metal affinity chromatography (IMAC) column, followed by the on-column folding and the final VLP assembly upon protein elution. This method is suitable for the fast production of B19V VLPs. KEY POINTS: • Biotechnological applications for inclusion bodies • Efficient single-step purification and immobilization strategies • Rapid VLP assembly strategy.


Assuntos
Proteínas de Bactérias , Parvovirus B19 Humano , Parvovirus B19 Humano/genética , Bactérias , Biotecnologia , Cromatografia de Afinidade
2.
Pathogens ; 12(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623967

RESUMO

Virus-like particles (VLPs) comprise one or many structural components of virions, except their genetic material. Thus, VLPs keep their structural properties of cellular recognition while being non-infectious. VLPs of Parvovirus B19 (B19V) can be produced by the heterologous expression of their structural proteins VP1 and VP2 in bacteria. These proteins are purified under denaturing conditions, refolded, and assembled into VLPs. Moreover, chimeric forms of VP2 have been constructed to harbor peptides or functional proteins on the surface of the particles without dropping their competence to form VLPs, serving as presenting nanoparticles. The in-vitro assembly approach offers exciting possibilities for the composition of VLPs, as more than one chimeric form of VP2 can be included in the assembly stage, producing multifunctional VLPs. Here, the heterologous expression and in-vitro assembly of B19V structural proteins and their chimeras are reviewed. Considerations for the engineering of the structural proteins of B19V are also discussed. Finally, the construction of multifunctional VLPs and their future potential as innovative medical tools are examined.

3.
Protein Sci ; 32(6): e4651, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37145875

RESUMO

Glucosamine-6-phosphate (GlcN6P) deaminases from Escherichia coli (EcNagBI) and Shewanella denitrificans (SdNagBII) are special examples of what constitute nonhomologous isofunctional enzymes due to their convergence, not only in catalysis, but also in cooperativity and allosteric properties. Additionally, we found that the sigmoidal kinetics of SdNagBII cannot be explained by the existing models of homotropic activation. This study describes the regulatory mechanism of SdNagBII using enzyme kinetics, isothermal titration calorimetry (ITC), and X-ray crystallography. ITC experiments revealed two different binding sites with distinctive thermodynamic signatures: a single binding site per monomer for the allosteric activator N-acetylglucosamine 6-phosphate (GlcNAc6P) and two binding sites per monomer for the transition-state analog 2-amino-2-deoxy-D-glucitol 6-phosphate (GlcNol6P). Crystallographic data demonstrated the existence of an unusual allosteric site that can bind both GlcNAc6P and GlcNol6P, implying that the homotropic activation of this enzyme arises from the occupation of the allosteric site by the substrate. In this work we describe the presence of this novel allosteric site in the SIS-fold deaminases, which is responsible for the homotropic and heterotropic activation of SdNagBII by GlcN6P and GlcNAc6P, respectively. This study unveils an original mechanism to generate a high degree of homotropic activation in SdNagBII, mimicking the allosteric and cooperative properties of hexameric EcNagBI but with a reduced number of subunits.


Assuntos
Escherichia coli , Fosfatos , Sítio Alostérico , Regulação Alostérica , Escherichia coli/metabolismo , Sítios de Ligação , Fosfatos/metabolismo , Cinética
4.
Int J Biol Macromol ; 242(Pt 1): 124734, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150366

RESUMO

The Inulinase from Kluyveromyces marxianus ISO3 (Inu-ISO3) is an enzyme able to hydrolyze linear fructans such as chicory inulin as well as branched fructans like agavin. This enzyme was cloned and expressed in Komagataella pastoris to study the role of selected aromatic and polar residues in the catalytic pocket by Alanine scanning. Molecular dynamics (MD) simulations and enzyme kinetics analysis were performed to study the functional consequences of these amino acid substitutions. Site-directed mutagenesis was used to construct the mutants of the enzyme after carrying out the MD simulations between Inu-ISO3 and its substrates. Mutation Trp79:Ala resulted in the total loss of activity when fructans were used as substrates, while with sucrose, the activity decreased by 98 %. In contrast, the mutations Phe113:Ala and Gln236:Ala increased the invertase activity when sucrose was used as a substrate. Although these amino acids are not part of the conserved motifs where the catalytic triad is located, they are essential for the enzyme's activity. In silico and experimental approaches corroborate the relevance of these residues for substrate binding and their influence on enzymatic activity.


Assuntos
Kluyveromyces , Simulação de Dinâmica Molecular , Glicosídeo Hidrolases/química , Kluyveromyces/genética , Frutanos/metabolismo , Aminoácidos/metabolismo , Sacarose/metabolismo
5.
J Fungi (Basel) ; 9(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36983476

RESUMO

A 32-fold increase in laccase activity production by the thermophilic biomass-degrading fungus T. terrestris Co3Bag1 was achieved when the microorganism was grown on a modified medium containing fructose, sodium nitrate, and copper. A 70 kDa laccase (TtLacA), produced under the above conditions, was purified, immobilized in copper alginate gel beads, and characterized. TtLacA, both free and immobilized enzymes, exhibited optimal activity at pH 3.0, at a temperature of 65 and 70 °C, respectively, although both displayed 70% of activity from 40 to 70 °C. Free and immobilized enzymes retained at least 80% of relative activity in the pH range from 3 to 4.6. Immobilized TtLacA manifested a 2.3-fold higher thermal stability than the free form of the enzyme at 60 and 70 °C. Immobilized TtLacA retained 95% initial activity for six consecutive reuse cycles at 60 °C, and also retained 86% of initial activity after 12 days of storage at 4 °C. Based on the biochemical features, thermophilic TtLacA may be an efficient enzyme for dye decolorization and other industrial applications at high temperatures or acidic conditions. This work represents the first report about the immobilization and biochemical characterization of a thermophilic laccase from a member of the genus Thielavia.

6.
J Fungi (Basel) ; 9(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36836267

RESUMO

The biomass-degrading thermophilic ascomycete fungus Thielavia terrestris Co3Bag1 produces TtCel7A, a native bifunctional cellulase/xylanase GH7 family. The purified TtCel7A, with an estimated molecular weight of 71 kDa, was biochemically characterized. TtCel7A displayed an optimal pH of 5.5 for both activities and an optimal temperature of 60 and 50 °C for cellulolytic and xylanolytic activities, respectively. The half-lives determined for cellulase activity were 140, 106, and 41 min at 50, 60, and 70 °C, respectively, whereas the half-lives observed for xylanase activity were 24, 10, and 1.4 h at 50, 60, and 70 °C, respectively. The KM and Vmax values were 3.12 mg/mL and 50 U/mg for cellulase activity and 0.17 mg/mL and 42.75 U/mg for xylanase activity. Circular dichroism analysis suggests changes in the secondary structure of TtCel7A in the presence of CMC as the substrate, whereas no modifications were observed with beechwood xylan. TtCel7A displayed the excellent capability to hydrolyze CMC, beechwood xylan, and complex substrates such as oat bran, wheat bran, and sugarcane bagasse, with glucose and cellobiose being the main products released; also, slightly less endo cellulase and xylanase activities were observed. Thus, suggesting TtCel7A has an exo- and endomode of action. Based on the characteristics of the enzyme, it might be considered a good candidate for industrial applications.

7.
Gene ; 829: 146508, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35447233

RESUMO

BACKGROUND: Evidence suggests that schizophrenia (SCZ), schizoaffective disorder (SAD) and bipolar disorder (BPD) share genetic risk variants. ZNF804A gene has been associated with these disorders in different populations. GWAS and candidate gene studies have reported association between the rs1344706 A allele with SCZ, SAD and BPD in European and Asian populations. In Mexican patients, no studies have specifically analyzed ZNF804A gene variants with these disorders. The aim of the study was to analyze the rs1344706 and identify common and rare variants in a targeted region of the ZNF804A gene in Mexican patients with SCZ, BPD and SAD compared with a control group. METHODS: We genotyped the rs1344706 in 228 Mexican patients diagnosed with SCZ, SAD and BPD, and 295 controls. Also, an additional sample of 167 patients with these disorders and 170 controls was analyzed to identify rare and common variants using the Sanger-sequence analysis of a targeted region of ZNF804A gene. RESULTS: Association analysis of rs1344706 observed a higher frequency of A allele in the patients compared with the control group; however, did not show statistical differences after Bonferronís correction (χ2 = 5.3, p = 0.0208). In the sequence analysis, we did not identify rare variants; however, we identified three common variants: rs3046266, rs1366842 and rs12477430. A comparison of the three identified variants between patients and controls did not show statistical differences (p > 0.0125). Finally, haplotype analysis did not show statistical differences between SCZ, SAD and BPD and controls. CONCLUSIONS: Our findings did not support the evidence suggesting that ZNF804A gene participates in the etiology of SCZ, SAD and BPD. Future studies are needed in a larger sample size to identify the effect of this gene in psychiatric disorders.


Assuntos
Transtorno Bipolar , Fatores de Transcrição Kruppel-Like , Transtornos Psicóticos , Esquizofrenia , Transtorno Bipolar/genética , Predisposição Genética para Doença , Humanos , Fatores de Transcrição Kruppel-Like/genética , México , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/genética , Esquizofrenia/genética
8.
Virology ; 570: 57-66, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367742

RESUMO

Virus-like particles (VLPs) from Parvovirus B19 (B19V) can be obtained by the self-assembly of the structural proteins VP1 and VP2. It is possible to produce B19V VLPs either from VP2 or a mixture of VP1 and VP2, through its heterologous expression in eukaryotic cells. The difference between VP1 and VP2 protein is a tract of 227 residues located at the N-terminal region of VP1, known as the VP1 unique region (VP1u). This region is critical for B19V infection, including tropism, cell internalization, and lysosomal scape through its phospholipase 2A activity. Herein, we report the in vitro self-assembly of VP1 to form VLPs. These species have phospholipase activity, suggesting that the phospholipase domain is correctly folded. Furthermore, VP1 and VP2 were co-assembled to produce hybrid VLPs which were able to bind and internalize in the non-permissive HepG2 cells, another evidence of the functionality of the in vitro refolded VP1u.


Assuntos
Parvovirus B19 Humano , Proteínas do Capsídeo/metabolismo , Parvovirus B19 Humano/genética , Fosfolipases
9.
Heliyon ; 7(11): e08464, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34888425

RESUMO

The photosynthetic phosphoenolpyruvate carboxylase isozyme from C4 plants (PEPC-C4) has a complex allosteric regulation, involving positive cooperativity in binding the substrate phosphoenolpyruvate as well as positive and negative allosteric effectors. Besides the proposed R- and T-states, previous kinetic results suggested functionally relevant different R-states of the maize enzyme (ZmPEPC-C4) elicited by PEP or its two kinds of activators, glucose 6-phosphate or glycine. To detect these different R-state conformations, we used as conformational probes the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS), near-UV circular dichroism (CD) spectroscopy, and limited proteolysis by trypsin. Phosphoenolpyruvate and malate binding caused distinct concentration-dependent fluorescence changes of ZmPEPC-C4/ANS, suggesting that they elicited conformational states different from that of the free enzyme, while glucose 6-phosphate or glycine binding did not produce fluorescence changes. Differences were also observed in the near UV CD spectra of the enzyme, free or complexed with its substrate or allosteric effectors. Additionally, differences in the trypsin-digestion fragmentation patterns, as well as in the susceptibility of the free and complexed enzyme to digestion and digestion-provoked loss of activity, provided evidence of several ZmPEPC-C4 conformations in solution elicited by the substrate and the allosteric effectors. Using the already reported ZmPEPC-C4 crystal structures and bioinformatics methods, we predicted that the most probable trypsin-cleavage sites are located in superficial flexible regions, which seems relevant for the protein dynamics underlying the function and allosteric regulation of this enzyme. Together, our findings agree with previous kinetic results, shed light on this enzyme's complex allosteric regulation, and place ZmPEPC-C4 in the growing list of allosteric enzymes possessing an ensemble of closely related R-state conformations.

10.
Immunol Lett ; 239: 77-87, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508790

RESUMO

Cancer immunotherapy is emerging as a viable treatment option for several types of cancer. Active immunotherapy aims for the induction of specific antitumor immune responses; this goal requires strategies capable of increasing the immunogenicity of tumour antigens. Parvovirus B19 virus-like particles (B19-VLPs) formed of VP2 protein had been shown to be an effective multi-neoepitope delivery system capable of inducing specific cellular responses towards coupled antigens and reducing tumour growth and lung metastases in triple negative breast cancer mouse model. These findings encouraged us to further characterise these VP2 B19-VLPs by testing their capacity to simultaneously induce cellular and humoral responses towards other tumour-associated antigens, as this had not yet been evaluated. Here, we designed and evaluated in the 4T1 breast cancer model the prophylactic and therapeutic effect of VP2 B19-VLPs decorated with cellular (P53) and humoral (MUC1) epitopes. Balb/c mice were immunised with chimaeric VLPs, vehicle, or VLPs plus adjuvant. Tumour establishment and growth, lung metastasis, and cellular and humoral immune responses were evaluated. The prophylactic administration of chimaeric VLPs without adjuvant prevented the establishment of the tumour, while by therapeutic administration, chimaeric VLPs induced smaller tumour growth and decreased the number of metastases in the lung compared to wild-type VLPs. chimaeric VLPs induced high antibody titres towards the MUC1 epitope, as well as specific cellular responses towards P53 epitopes in lymph nodes local to the tumour. Our results reinforce and extend the utility of VP2 B19-VLPs as an encouraging tumour antigen delivery system in cancer immunotherapy able to improve tumour immunity in TNBC by inducing cellular and humoral immune responses.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Parvovirus B19 Humano/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Neoplasias/administração & dosagem , Toxinas de Bacillus thuringiensis/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endotoxinas/administração & dosagem , Feminino , Proteínas Hemolisinas/administração & dosagem , Humanos , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , Proteínas de Insetos , Camundongos , Receptores de Superfície Celular , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
11.
Protein Expr Purif ; 176: 105718, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32777449

RESUMO

Exo-inulinases are versatile enzymes that have gained attention in recent years due to their ability to hydrolyze linear and branched polyfructose chains found in inulines. Agavin, a branched inulin, is found in Agave plant, the raw matter to produce tequila. Our group has isolated several microbial strains from agave bagasse, an agro-industrial residue from tequila production that increases yearly. Strain ISO3, identified as Kluyveromyces marxianus, showed a remarkable activity towards agavin, and from its fermentation liquor an inulinolytic enzyme (Inu-ISO3) was purified. The isolated enzyme is a glycosylated dimeric protein with a molecular mass of ~256 kDa, as determined by DLS and SEC. The enzyme has an isoelectric pH of 4.6 and has both inulinase and invertase activities with an I/S ratio (ratio of activity with agavin to activity with sucrose) of 1.39. The enzyme has temperature and pH optima of 50 °C and 5.5, respectively, and follows hyperbolic kinetics with agavin (kcat of 339 ± 27 s-1 and KM of 11.8 ± 1.5 mM). The remarkable activity of Inu-ISO3 on linear and branched inulin spotlights this enzyme as a potential player in the treatment of agricultural residua for the generation of added-value products.


Assuntos
Agave/microbiologia , Proteínas Fúngicas , Glicosídeo Hidrolases , Inulina/química , Kluyveromyces , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Hidrólise , Kluyveromyces/enzimologia , Kluyveromyces/isolamento & purificação
12.
Vaccine ; 37(49): 7256-7268, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31570181

RESUMO

Triple-negative breast cancer is a major health problem that lacks molecular targets for therapy. Neoepitopes represent a viable option to induce antitumor immune responses, but they have limitations, such as low immunogenicity and tolerance induction. Parvovirus B19 virus-like particles may be used to deliver neoepitopes to prime cellular immunity. We designed and evaluated the therapeutic effect of VP2 B19-virus-like particles, with multi-neoepitopes, in a 4T1 breast cancer model. Balb/c mice received four therapeutic immunizations with multi-neoepitopes-virus-like, wild type-virus-like, vehicle, or virus-like plus Cry1Ac adjuvant particles, intraperitoneally and peritumorally. Tumor growth, lung macro-metastasis, and specific immune responses were evaluated. Therapeutic administration of multi-epitopes virus-like particles significantly delayed tumor growth and decreased the lung macro-metastasis number, in comparison to treatment with wild type-virus-like particles, which surprisingly also elicited antitumoral effects that were improved with the adjuvant. Only treatments with multi-epitope virus-like particles induced specific proliferative responses of CD8 and CD4 T lymphocytes and Granzyme-B production in lymphatic nodes local to the tumor. Treatment with recombinant multiple neoepitopes-virus-like particles induced specific cellular responses, inhibited tumor growth and macro-metastasis, thus B19-virus-like particles may function as an effective delivery system for neoepitopes for personalized immunotherapy.


Assuntos
Epitopos/imunologia , Imunidade Celular/imunologia , Imunoterapia/métodos , Neoplasias Mamárias Experimentais/terapia , Parvovirus B19 Humano/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endotoxinas/imunologia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Proteínas Hemolisinas/imunologia , Imunização , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Parvovirus B19 Humano/genética
13.
Mol Biotechnol ; 61(10): 742-753, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31317318

RESUMO

Breast cancer is a worldwide health problem, and the complexity of the disease, as well as the lack of treatment specificity, generates an urgent need for developing prophylactic and therapeutic measures. Searching for novel epitope-based approaches able to induce tumour immunity, we designed virus-like particles (VLPs) derived from Human parvovirus B19 assembled of chimeric VP2 proteins displaying two epitopes from the insulin-like growth factor-1 receptor (IGF-1R). Here, we present the generation of two chimeric VP2s that retain the stability, solubility and conditions of purification and assembly of the native VP2. We generated versatile chimeric multiepitope anti-cancer vaccine candidates, which prevented and delayed tumour growth when used in a prophylactic scheme of 4 weekly immunizations prior to 4T1 cell inoculation in female BALB/c mice. The presence of specific antibodies against the displayed epitopes suggests their participation in the protective effect; in contrast, no significant proliferative T-cell responses were recorded following stimulation by specific epitopes. The results comprise an approach whereby fusing desired epitopes from cancer to the N-terminus of B19 VP2 protein can generate a library of chimeric VP2-desired epitopes for further assembly in a designed and personalized epitope delivery system.


Assuntos
Neoplasias da Mama/prevenção & controle , Epitopos/metabolismo , Parvovirus B19 Humano/metabolismo , Receptor IGF Tipo 1/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Animais , Apoptose , Neoplasias da Mama/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Epitopos/genética , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Parvovirus B19 Humano/genética , Resultado do Tratamento , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
14.
Virus Res ; 255: 1-9, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29964063

RESUMO

The natural properties of virus-like particles (VLPs), like their nanometric size, polyvalence, monodispersity and biocompatibility, had called the attention of scientists from different fields. VLPs constitute an excellent platform for the development nanomaterials with a broad spectrum of applications, ranging from physics of soft matter to the development of vaccines and biological nanocarriers. To expand the repertoire of functions of VLPs, they can be decorated with different molecules. In this research, the α-glucosidase Ima1p of Saccharomyces cerevisiae was attached to the surface of in vitro assembled VLPs of parvovirus B19, by using the SpyTag/SpyCatcher system. The resulting particles were structurally characterized displaying a noticeable increase in size compared to the non-decorated VLPs. The study of the biochemical properties of the coupled enzyme indicate that it increased its Vmax by three-fold toward p-nitrophenyl-α-D-glucopyranoside (p-NPG) as substrate. In addition, the linked enzyme displayed a notorious 10 °C shift in its optimal temperature, from 35 °C for the non-attached enzyme, to 45 °C for the enzyme attached to VLPs. The decorated VLPs were also able to act on glycogen; therefore, these particles may be further developed as part of the therapy for treatment of lysosomal storage diseases derived from defects in the human acid α-glucosidase.


Assuntos
Proteínas do Capsídeo/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanopartículas/metabolismo , Parvovirus B19 Humano/química , alfa-Glucosidases/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Glucosídeos/metabolismo , Glicogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas/ultraestrutura , Tamanho da Partícula , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Montagem de Vírus , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
15.
Carbohydr Polym ; 181: 684-692, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254023

RESUMO

A nano-composite from biologically obtained chitin nanofillers homogenously dispersed in a poly(ε-caprolactone) matrix was successfully achieved by an ultrasonication-assisted non-toxic and non-aqueous methodology. For this purpose, biological chitin was obtained from lactic acid fermentation of shrimp wastes and converted into chitin whiskers by acidic hydrolysis in a novel process at low temperature (4°C) that enhanced the distribution and yield. Additionally, the polyester matrix was enzymatically produced in a non-toxic compressed fluid (1,1,1,2-tetrafluoroethane at 25bar and 65°C) medium. The homogeneous distribution of the nanofiller in the matrix was corroborated by confocal and atomic force microscopies. Films of the nanocomposite were physicochemically characterized to assess its adequate properties. Additionally, the qualitative viability of human fibroblasts and osteoblasts cells was studied on the produced nanocomposite films showing good biocompatibility.


Assuntos
Quitina/química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Adulto , Animais , Candida/enzimologia , Criança , Quitina/isolamento & purificação , Fibroblastos , Química Verde , Humanos , Hidrocarbonetos Fluorados/química , Hidrólise , Lactobacillus plantarum/química , Lipase/química , Osteoblastos , Tamanho da Partícula , Penaeidae/química
16.
RSC Adv ; 8(63): 35936-35945, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-35558459

RESUMO

Chemoenzymatic polypeptide synthesis offers several advantages over chemical or other biological routes, however, the use of aqueous-based media suffers from reverse hydrolysis reactions that challenge peptide chain propagation. Herein, the protease from subtilisin Carlsberg biocatalyzed the synthesis of poly-l-PheOEt, poly-l-LeuOEt, and the copolymers poly-l-PheOEt-co-l-LeuOEt from their amino acid ethyl ester substrates in a neat liquid 1,1,1,2-tetrafluoroethane solvent. The products, achieved in acceptable yields (ca. 50%), were fully characterized showing relatively high molar mass (ca. 20 000 Da for poly-l-PheOEt). This non-toxic low-boiling hydrofluorocarbon enhances enzymatic peptide propagation by limiting hydrolysis owing to its hydrophobic and relatively polar characteristics that sustain the protease activity and solubilize substrates and products. Computational molecular dynamic calculations were used to assess the l-PheOEt/l-LeuOEt-solvent and polypeptide-solvent interactions in this system. Additionally, the homopolypeptides displayed higher crystallinity than the copolypeptides with random incorporation of amino acid ethyl esters, notwithstanding the significantly highest specificity for Phe in this system. Interestingly, secondary structure characterization of the products by FTIR and circular dichroism suggests a non-common peptide folding.

17.
J Biotechnol ; 263: 55-63, 2017 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-28935566

RESUMO

Decoration of virus-like particles (VLPs) expands the repertory of functions these particles can display. In the last years, VLPs have successfully been used as scaffolds to present different molecules, frequently through the specific reaction of chemical groups on the surface of the particles, or by protein engineering when the presentation of peptides or proteins is the primary goal. VLPs of parvovirus B19 (B19V), have been previously produced in vitro and its stability and ability to assemble into hybrid particles composed of wild-type and chimeric proteins evidenced their potential as research tools. Herein, we report the presentation of functional proteins on the surface of B19V VLPs, through the fusion of the gene coding for the heterologous protein within the gene coding for the structural protein VP2. Two model proteins were used for the construction of chimeras, a lipase from Bacillus pumilus (BplA) and the enhanced green fluorescent protein (EGFP). Both chimeras were folded and successfully assembled in vitro into VLPs. While the BplA chimera exhibited esterase activity, the chimera of EGFP showed no fluorescence. We replaced the EGFP by its fast-folding derivative "super folder GFP" (sfGFP) flanked by larger linkers to increase its movement freedom, which resulted in fluorescent protein able to assemble fluorescent VLPs. These results expand the toolbox for VLP decoration as well as for the construction of new nanobiomaterials.


Assuntos
Parvovirus B19 Humano/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Vírion/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lipase/genética , Lipase/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Parvovirus B19 Humano/genética , Proteínas Recombinantes de Fusão/genética , Vírion/genética
18.
Molecules ; 22(4)2017 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-28441731

RESUMO

The digestive enzymes-polyphenolic compounds (PCs) interactions behind the inhibition of these enzymes have not been completely studied. The existing studies have mainly analyzed polyphenolic extracts and reported inhibition percentages of catalytic activities determined by UV-Vis spectroscopy techniques. Recently, pure PCs and new methods such as isothermal titration calorimetry and circular dichroism have been applied to describe these interactions. The present review focuses on PCs structural characteristics behind the inhibition of digestive enzymes, and progress of the used methods. Some characteristics such as molecular weight, number and position of substitution, and glycosylation of flavonoids seem to be related to the inhibitory effect of PCs; also, this effect seems to be different for carbohydrate-hydrolyzing enzymes and proteases. The digestive enzyme-PCs molecular interactions have shown that non-covalent binding, mostly by van der Waals forces, hydrogen binding, hydrophobic binding, and other electrostatic forces regulate them. These interactions were mainly associated to non-competitive type inhibitions of the enzymatic activities. The present review emphasizes on the digestive enzymes such as α-glycosidase (AG), α-amylase (PA), lipase (PL), pepsin (PE), trypsin (TP), and chymotrypsin (CT). Existing studies conducted in vitro allow one to elucidate the characteristics of the structure-function relationships, where differences between the structures of PCs might be the reason for different in vivo effects.


Assuntos
Hidrolases/química , Polifenóis/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Termodinâmica
19.
Virus Res ; 224: 12-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27523978

RESUMO

Virus-like particles (VLPs) have demonstrated to be valuable scaffolds for the display of heterologous peptides for vaccine development and other specific interactions. VLPs of primate erythroparvovirus 1, generally referred as parvovirus B19 (B19V), have already been produced in-vivo and in-vitro from the recombinant VP2 protein of this virus. In this study, chimeric forms of B19V VP2 were constructed, and their ability to assemble into VLPs was evaluated. Chimeras were composed of the VP2 protein fused, at its N-terminus, with two peptides derived from the fusion glycoprotein (F) of the respiratory syncytial virus (RSV). The chimeric proteins self-assembled into VLPs morphologically similar to B19V virions. Stability of these VLPs was analyzed under denaturation conditions with guanidinium chloride (GdnHCl). Our results indicate that the presence of the heterologous fragments increased the stability of VLPs assembled by any of the VP2 chimeras. Specific proteolysis assays shown that a fraction of the N-termini of the chimeric proteins is located on the outer surface of the VLPs. Immunogenicity of VLPs against RSV was evaluated and the results indicate that the particles can elicit a humoral immune response, although these antibodies did not cross-react with RSV in ELISA tests. These results provide novel insights into the localization of the N-termini of B19V VP2 protein after in vitro assembly into VLPs, and point them to be attractive sites to display peptides or proteins without compromise the assembly or stability of VLPs.


Assuntos
Parvovirus B19 Humano/química , Parvovirus B19 Humano/imunologia , Biblioteca de Peptídeos , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/química , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/análise , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Guanidina/química , Imunidade Humoral , Imunogenicidade da Vacina/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Desnaturação Proteica , Estabilidade Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vírus Sincicial Respiratório Humano/química , Vírus Sincicial Respiratório Humano/imunologia , Vírion/química , Vírion/genética , Vírion/imunologia
20.
J Bacteriol ; 198(11): 1610-1620, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27002132

RESUMO

UNLABELLED: We have investigated the impact of growth on glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) on cellular metabolism by quantifying glycolytic metabolites in Escherichia coli Growth on GlcNAc increased intracellular pools of both GlcNAc6P and GlcN6P 10- to 20-fold compared to growth on glucose. Growth on GlcN produced a 100-fold increase in GlcN6P but only a slight increase in GlcNAc6P. Changes to the amounts of downstream glycolytic intermediates were minor compared to growth on glucose. The enzyme glucosamine-6P deaminase (NagB) is required for growth on both GlcN and GlcNAc. It is an allosteric enzyme in E. coli, displaying sigmoid kinetics with respect to its substrate, GlcN6P, and is allosterically activated by GlcNAc6P. The high concentration of GlcN6P, accompanied by the small increase in GlcNAc6P, drives E. coli NagB (NagBEc) into its high activity state, as observed during growth on GlcN (L. I. Álvarez-Añorve, I. Bustos-Jaimes, M. L. Calcagno, and J. Plumbridge, J Bacteriol 191:6401-6407, 2009, http://dx.doi.org/10.1128/JB.00633-09). The slight increase in GlcNAc6P during growth on GlcN is insufficient to displace NagC, the GlcNAc6P-responsive repressor of the nag genes, from its binding sites, so there is only a small increase in nagB expression. We replaced the gene for the allosteric NagBEc enzyme with that of the nonallosteric, B. subtilis homologue, NagBBs We detected no effects on growth rates or competitive fitness on glucose or the amino sugars, nor did we detect any effect on the concentrations of central metabolites, thus demonstrating the robustness of amino sugar metabolism and leaving open the question of the role of allostery in the regulation of NagB. IMPORTANCE: Chitin, the polymer of N-acetylglucosamine, is an abundant biomaterial, and both glucosamine and N-acetylglucosamine are valuable nutrients for bacteria. The amino sugars are components of numerous essential macromolecules, including bacterial peptidoglycan and mammalian glycosaminoglycans. Controlling the biosynthetic and degradative pathways of amino sugar metabolism is important in all organisms to avoid loss of nitrogen and energy via a futile cycle of synthesis and breakdown. The enzyme glucosamine-6P deaminase (NagB) is central to this control, and N-acetylglucosamine-6P is the key signaling molecule regulating amino sugar utilization in Escherichia coli Here, we investigate how the metabolic status of the bacteria impacts on the activity of NagBEc and the N-acetylglucosamine-6P-sensitive transcriptional repressor, NagC.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Amino Açúcares/metabolismo , Ativação Enzimática/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Repressoras/metabolismo , Aldose-Cetose Isomerases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Mutação , Organismos Geneticamente Modificados , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...