Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 10(1): 4, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238339

RESUMO

Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), are required for the structure and function of the retina. Several observational studies indicate that consumption of a diet with relatively high levels of n-3 PUFAs, such as those provided by fish oils, has a protective effect against the development of age-related macular degeneration. Given the accumulating evidence showing the role of gut microbiota in regulating retinal physiology and host lipid metabolism, we evaluated the potential of long-term dietary supplementation with the Gram-positive bacterium Lactobacillus helveticus strain VEL12193 to modulate the retinal n-3 PUFA content. A set of complementary approaches was used to study the impact of such a supplementation on the gut microbiota and host lipid/fatty acid (FA) metabolism. L. helveticus-supplementation was associated with a decrease in retinal saturated FAs (SFAs) and monounsaturated FAs (MUFAs) as well as an increase in retinal n-3 and omega-6 (n-6) PUFAs. Interestingly, supplementation with L. helveticus enriched the retina in C22:5n-3 (docosapentaenoic acid, DPA), C22:6n-3 (DHA), C18:2n-6 (linoleic acid, LA) and C20:3n-6 (dihomo gamma-linolenic acid, DGLA). Long-term consumption of L. helveticus also modulated gut microbiota composition and some changes in OTUs abundance correlated with the retinal FA content. This study provides a proof of concept that targeting the gut microbiota could be an effective strategy to modulate the retinal FA content, including that of protective n-3 PUFAs, thus opening paths for the design of novel preventive and/or therapeutical strategies for retinopathies.


Assuntos
Ácidos Graxos Ômega-3 , Lactobacillus helveticus , Animais , Camundongos , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Lactobacillus helveticus/metabolismo , Disponibilidade Biológica , Dieta , Retina/química , Retina/metabolismo
2.
BMC Ophthalmol ; 23(1): 404, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803473

RESUMO

BACKGROUND: Incomplete vascularization of the retina in preterm infants carries a risk of retinopathy of prematurity (ROP). Progress in neonatal resuscitation in developing countries has led to the survival of an increasing number of premature infants, resulting in an increased rate of ROP and consequently in visual disability. Strategies to reduce ROP involve optimizing oxygen saturation, nutrition, and normalizing factors such as insulin-like growth factor 1 and n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Our previous study, OmegaROP, showed that there is an accumulation or retention of docosahexaenoic acid (DHA) in mothers of infants developing ROP, suggesting abnormalities in the LC-PUFA placental transfer via fatty acid transporting proteins. The present study aims to better understand the LC-PUFA transport dysfunction in the fetoplacental unit during pregnancy and to find a novel target for the prevention of ROP development. METHODS: The study protocol is designed to evaluate the correlation between the expression level of placental fatty acid receptors and ROP occurrence. This ongoing study will include 100 mother-infant dyads: mother-infant dyads born before 29 weeks of gestational age (GA) and mother-infant dyads with full-term pregnancies. Recruitment is planned over a period of 46 months. Maternal and cord blood samples as well as placental tissue samples will be taken following delivery. ROP screening will be performed using wide-field camera imaging according to the International Classification of ROP consensus statement. DISCUSSION: The results of this study will have a tangible impact on public health. Indeed, if we show a correlation between the expression level of placental omega-3 receptors and the occurrence of ROP, it would be an essential step in discovering novel pathophysiological mechanisms involved in this retinopathy. TRIAL REGISTRATION: NCT04819893.


Assuntos
Recém-Nascido Prematuro , Retinopatia da Prematuridade , Lactente , Recém-Nascido , Humanos , Feminino , Gravidez , Retinopatia da Prematuridade/epidemiologia , Ácidos Graxos , Placenta , Ressuscitação , Idade Gestacional , Fatores de Risco
3.
Acta Ophthalmol ; 101(1): e61-e68, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35920328

RESUMO

PURPOSE: The aim of this study was to evaluate docosahexaenoic acid (DHA) as a potential antifibrotic agent after glaucoma filtration surgery (GFS) in rats. METHODS: A total of 36 10-week-old Brown Norway rats underwent GFS. Animals were equally divided into three groups: a control group, a DHA group and a mitomycin C (MMC) group. Intraocular pressure (IOP) was measured using a dynamic rebound tonometer, and a photograph of the surgical site was taken on days 1, 3, 7, 10, 14 and 17. The incorporation of DHA into fibroblasts was evaluated by gas chromatography. The expression of alfa-smooth muscle actin (α-SMA) and Smad proteins was assessed by Western blotting. RESULTS: IOP decreased after surgery in animals from the three groups on day 1 after surgery. Over time, IOP remained lower in the DHA and MMC groups than in the control group (median [interquartile range] 8.0 [7.0-8.0] and 8.0 [7.3-8.0] mmHg vs. 9.0 [8.0-9.0] mmHg, respectively; p < 0.001). Bleb area in the DHA and MMC groups remained larger than that of the control group from day 7 to day 14 (3.9 [2.9-5.2] and 3.5 [2.3-4.4] mm2 vs. 2.3 [2.0-2.8] mm2 , respectively; p = 0.0021). We did not observe any change in DHA concentrations in the fibroblasts of the DHA group compared with the other groups. CONCLUSION: The impact of DHA on IOP and bleb area was similar to that of MMC. The mechanisms of action of DHA in rat eye fibroblasts deserve further investigation.


Assuntos
Cirurgia Filtrante , Glaucoma , Trabeculectomia , Animais , Ratos , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos , Fibrose , Glaucoma/cirurgia , Pressão Intraocular , Mitomicina/farmacologia
4.
Nutrients ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956273

RESUMO

Plasmalogens (Pls) are glycerophospholipids that play critical roles in the brain. Evidence supports the role of diet and that of the gut microbiota in regulating brain lipids. We investigated the impact of dietary intake of inulin-a soluble fiber used as prebiotic-on the Pl content of the cortex in mice. No global modification in the Pl amounts was observed when evaluated by gas chromatographic analysis of dimethyl acetals (DMAs). However, the analysis of individual molecular species of Pls by liquid chromatography revealed a reduced abundance of major species of ethanolamine Pls (PlsEtn)-PE(P-18:0/22:6) and PE(P-34:1)-in the cortex of mice fed a diet supplemented with inulin. DMA and expression levels of genes (Far-1, Gnpat, Agps, Pla2g6 and Tmem86b) encoding key enzymes of Pl biosynthesis or degradation were not altered in the liver and in the cortex of mice exposed to inulin. In addition, the fatty acid profile and the amount of lyso forms derived from PlsEtn were not modified in the cortex by inulin consumption. To conclude, inulin affects the brain levels of major PlsEtn and further investigation is needed to determine the exact molecular mechanisms involved.


Assuntos
Inulina , Plasmalogênios , Animais , Encéfalo/metabolismo , Suplementos Nutricionais , Fosfolipases A2 do Grupo VI/metabolismo , Inulina/metabolismo , Fígado/metabolismo , Camundongos , Plasmalogênios/metabolismo
5.
Front Cell Dev Biol ; 10: 864599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433704

RESUMO

Plasmalogens are a specific glycerophospholipid subtype characterized by a vinyl-ether bound at their sn-1 moiety. Their biosynthesis is initiated in the peroxisome by dihydroxyacetone phosphate-acyltransferase (DHAPAT), which is encoded by the DAPAT gene. Previous studies have shown that plasmalogen-deficient mice exhibit major physiological dysfunctions including several eye defects, among which abnormal vascular development of the retina and a reactive activation of macroglial Müller cells. Interestingly, plasmalogen deficiency in mice is also associated with a reduced expression of brain connexin 43 (Cx43). Cx43 is the main connexin subtype of retinal glial cells and is involved in several cellular mechanisms such as calcium-based gap junction intercellular communication (GJIC) or cell migration. Thus, the aim of our work was 1) to confirm the alteration of Cx43 expression in the retina of plasmalogen-deficient DAPAT-/- mice and 2) to investigate whether plasmalogens are involved in crucial functions of Müller cells such as GJIC and cell migration. First, we found that plasmalogen deficiency was associated with a significant reduction of Cx43 expression in the retina of DAPAT-/- mice in vivo. Secondly, using a siRNA targeting DHAPAT in vitro, we found that a 50%-reduction of Müller cells content in plasmalogens was sufficient to significantly downregulate Cx43 expression, while increasing its phosphorylation. Furthermore, plasmalogen-depleted Müller cells exhibited several alterations in ATP-induced GJIC, such as calcium waves of higher amplitude that propagated slower to neighboring cells, including astrocytes. Finally, in vitro plasmalogen depletion was also associated with a significant downregulation of Müller cells migration. Taken together, these data confirm that plasmalogens are critical for the regulation of Cx43 expression and for characteristics of retinal Müller glial cells such as GJIC and cell migration.

6.
PLoS One ; 17(3): e0264787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275950

RESUMO

Alterations of cholesterol metabolism have been described for many neurodegenerative pathologies, such as Alzheimer's disease in the brain and age-related macular degeneration in the retina. Recent evidence suggests that glaucoma, which is characterized by the progressive death of retinal ganglion cells, could also be associated with disruption of cholesterol homeostasis. In the present study we characterized cholesterol metabolism in a rat model of laser-induced intraocular hypertension, the main risk factor for glaucoma. Sterol levels were measured using gas-chromatography and cholesterol-related gene expression using quantitative RT-PCR at various time-points. As early as 18 hours after the laser procedure, genes implicated in cholesterol biosynthesis and uptake were upregulated (+49% and +100% for HMG-CoA reductase and LDLR genes respectively, vs. naive eyes) while genes involved in efflux were downregulated (-26% and -37% for ApoE and CYP27A1 genes, respectively). Cholesterol and precursor levels were consecutively elevated 3 days post-laser (+14%, +40% and +194% for cholesterol, desmosterol and lathosterol, respectively). Interestingly, counter-regulatory mechanisms were transcriptionally activated following these initial dysregulations, which were associated with the restoration of retinal cholesterol homeostasis, favorable to ganglion cell viability, one month after the laser-induced ocular hypertension. In conclusion, we report here for the first time that ocular hypertension is associated with transient major dynamic changes in retinal cholesterol metabolism.


Assuntos
Glaucoma , Hipertensão Ocular , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Glaucoma/metabolismo , Hipertensão Ocular/metabolismo , Ratos , Retina/patologia , Células Ganglionares da Retina/patologia
7.
Nutrients ; 13(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806985

RESUMO

Diet shapes the gut microbiota which impacts hepatic lipid metabolism. Modifications in liver fat content are associated with metabolic disorders. We investigated the extent of dietary fat and fiber-induced alterations in the composition of gut microbiota and hepatic fatty acids (FAs). Mice were fed a purified low-fat diet (LFD) or high-fat diet (HFD) containing non-soluble fiber cellulose or soluble fiber inulin. HFD induced hepatic decreases in the amounts of C14:0, C16:1n-7, C18:1n-7 and increases in the amounts of C17:0, C20:0, C16:1n-9, C22:5n-3, C20:2n-6, C20:3n-6, and C22:4n-6. When incorporated in a LFD, inulin poorly affected the profile of FAs. However, when incorporated in a HFD, it (i) specifically led to an increase in the amounts of hepatic C18:0, C22:0, total polyunsaturated FAs (PUFAs), total n-6 PUFAs, C18:3n-3, and C18:2n-6, (ii) exacerbated the HFD-induced increase in the amount of C17:0, and (iii) prevented the HFD-induced increases in C16:1n-9 and C20:3n-6. Importantly, the expression/activity of some elongases and desaturases, as well as the gut microbiota composition, were impacted by the dietary fat and fiber content. To conclude, inulin modulated gut microbiota and hepatic fatty acid composition, and further investigations will determine whether a causal relationship exists between these two parameters.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Glicemia/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta com Restrição de Gorduras , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Ácidos Graxos Insaturados/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Triglicerídeos/sangue
8.
Exp Eye Res ; 196: 108059, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387380

RESUMO

Structure and function of the retina mainly rely on its fatty acid (FA) composition. Evidence from epidemiological studies and from animal experiments indicates that FA composition of the retina is influenced by the diet. Mice under chronic high-fat diet (HFD) develop metabolic syndrome, a risk factor for diabetes that is associated with structural and functional alterations of the retina. Here, we studied the impact of chronic exposure of mice to HFD on retinal FA composition. C57BL/6 J male mice were fed either a chow diet or a HFD for 11 weeks. As expected, HFD induced weight gain, adiposity, hyperglycemia and dyslipidemia. The retinal FA composition was determined by gas chromatography coupled to flame ionization detection. No significant change in the relative abundance of total saturated FAs (SFAs), total monounsaturated FAs (MUFAs) or total polyunsaturated FAs (PUFAs) was observed. However, retinas of HFD-fed mice displayed decreased amounts of C24:0 (p = 0.0231), C16:1n-7 (p < 0.0001), C18:1n-7 (p < 0.0001), C20:3n-9 (p = 0.0425) and C20:3n-6 (p = 0.0008), and an increased amount of C20:2n-6 (p < 0.0001). In addition, the ratio of linoleic acid (C18:2n-6) to alpha-linolenic acid (C18:3n-3) was increased in the retinas of HFD-fed mice (15.0 ± 0.8 versus 11.8 ± 0.6 in HFD and CD, respectively, p = 0.0045). No modification in the contents of arachidonic acid (C20:4n-6, AA) and docosahexaenoic acid (C22:6n-3, DHA) were observed. Analysis of dimethylacetals (DMA), which are residues of plasmalogens (Pls), revealed that the amount of Pls containing octadecanal-aldehydes (DMA C18:0) was significantly increased in HFD-fed mice (p = 0.0447). This increase was, at least in part, balanced by a decrease in Pls containing 7-octadecanal-aldehydes (DMA C18:1n-7) (p = 0.0007). In conclusion, HFD had an impact on the relative proportion of essential dietary fatty acids linoleic acid and alpha-linolenic acid that are incorporated in the retina. However, this imbalance in PUFA precursors did not alter the content of the two major retinal long-chain PUFAs, AA and DHA. HFD consumption also led to alterations in the retinal SFAs, MUFAs and Pls profiles.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Linoleicos/metabolismo , Síndrome Metabólica/etiologia , Retina/metabolismo , Ácido alfa-Linolênico/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Glicemia/metabolismo , Cromatografia Gasosa , Dislipidemias/etiologia , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Hiperglicemia/etiologia , Fígado/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasmalogênios/metabolismo , Aumento de Peso/efeitos dos fármacos
9.
Exp Eye Res ; 189: 107857, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31654618

RESUMO

Communication between neurons and glia plays a major role in nervous tissue homeostasis. It is thought to participate in tuning cholesterol metabolism to cellular demand, which is a critical issue for neuronal health. Cholesterol is a membrane lipid crucial for nervous tissue functioning, and perturbed regulation of its metabolism has been linked to several neurodegenerative disorders. In the brain, 24(S)-hydroxycholesterol (24S-OHC) is an oxysterol synthesized by neurons to eliminate cholesterol, and 24S-OHC has been shown to regulate cholesterol metabolism in astrocytes, glial cells which provide cholesterol to neurons. In the retina, 24S-OHC is also an elimination product of cholesterol produced by neurons, especially the retinal ganglion cells. However, it is not known whether Müller cells, the major macroglial cells of the retina, play the role of cholesterol provider for retinal neurons and whether they respond to 24S-OHC signaling, similarly to brain glial cells. In the present study, primary cultures of rat Müller cells were treated with 0, 0.5 or 1.5 µM 24S-OHC for 48 hours. The levels of cholesterol, precursors and oxysterols were quantified using gas chromatography coupled to flame-ionization detection or mass spectrometry. In addition, the expression of key genes related to cholesterol metabolism was analyzed using RTq-PCR. Müller cells were shown to express many genes linked to cholesterol metabolism, including genes coding for proteins implicated in cholesterol biosynthesis (HMGCR), cholesterol uptake and export via lipoproteins (LDL-R, SR-BI, ApoE and ABACA1) and regulation of cholesterol metabolism (SREBP2 and LXRß). Cholesterol and several of its precursors and oxidative products were present. CYP27A1, the main retinal enzyme implicated in cholesterol elimination via oxysterol production, was quantified at low transcript levels but neither of its two typical products were detected in Müller cells. Furthermore, our results demonstrate that 24S-OHC has a strong hypocholesterolemic effect in Müller cells, leading to cholesterol depletion (-37 % at 1.5 µM). This was mediated by a decrease in cholesterol synthesis, as illustrated by reduced levels of cholesterol precursors: desmosterol (-38 % at 1.5 µM) and lathosterol (-84 % at 1.5 µM), and strong downregulation of HMGCR gene expression (2.4 fold decrease at 1.5µM). In addition, LDL-R and SR-BI gene expression were reduced in response to 24S-OHC treatment (2 fold and 1.6 fold at 1.5 µM, respectively), suggesting diminished lipoprotein uptake by the cells. On the contrary, there was a dramatic overexpression of ABCA1 transporter (10 fold increase at 1.5 µM), probably mediating an increase in cholesterol efflux. Finally, 24S-OHC induced a small but significant upregulation of the CYP27A1 gene. These data indicate that Müller cells possess the necessary cholesterol metabolism machinery and that they are able to sharply adjust their cholesterol metabolism in response to 24S-OHC, a signal molecule of neuronal cholesterol status. This suggests that Müller cells could be major players of cholesterol homeostasis in the retina via neuron-glia crosstalk.


Assuntos
Colesterol/metabolismo , Células Ependimogliais/metabolismo , Hidroxicolesteróis/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Retina/metabolismo , Animais , Células Cultivadas , Células Ependimogliais/citologia , Modelos Animais , Neuroglia/citologia , Neurônios/citologia , Ratos , Ratos Long-Evans , Retina/citologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-31993375

RESUMO

Understanding the molecular mechanisms underlying the changes observed during aging is a prerequisite to design strategies to prevent age-related diseases. Aging is associated with metabolic changes, including alteration in the brain lipid metabolism. These alterations may contribute to the development of pathophysiological conditions. Modifications in the gut microbiota composition are also observed during aging. As communication axes exist between the gut microbiota and the brain and knowing that microbiota influences the host metabolism, we speculated on whether age-associated modifications in the gut microbiota could be involved in the lipid changes observed in aging brain. For that purpose, germ-free mice were colonized by the fecal microbiota of young or old donor mice. Lipid classes and fatty acid profiles were determined in the brain (cortex), plasma and liver by thin-layer chromatography on silica gel-coated quartz rods and gas chromatography. Gut colonization by microbiota of old mice resulted in a significant increase in total monounsaturated fatty acids (MUFA) and a significant decrease in the relative amounts of cholesterol and total polyunsaturated fatty acids (PUFA) in the cortex. Among the eight most represented fatty acids in the cortex, the relative abundances of five (C18:1n-9, C22:6n-3, C20:4n-6, C18:1n-7, and C20:1n-9) were significantly altered in mice inoculated with an aged microbiota. Liquid chromatography analyses revealed that the relative abundance of major species among phosphatidyl and plasmenylcholine (PC 16:0/18:1), phosphatidyl and plasmenylethanolamine (PE 18:0/22:6), lysophosphatidylethanolamine (LPE 22:6) and sphingomyelins (SM d18:1/18:0) were significantly altered in the cortex of mice colonized by the microbiota obtained from aged donors. Transplantation of microbiota from old mice also modified the lipid class and fatty acid content in the liver. Finally, we found that the expression of several genes involved in MUFA and PUFA synthesis (Scd1, Fads1, Fads2, Elovl2, and Elovl5) was dysregulated in mice inoculated with an aged microbiota. In conclusion, our data suggest that changes in gut microbiota that are associated with aging can impact brain and liver lipid metabolisms. Lipid changes induced by an aged microbiota recapitulate some features of aging, thus pointing out the potential role of microbiota alterations in the age-related degradation of the health status.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiologia , Metabolismo dos Lipídeos , Fatores Etários , Animais , Colesterol/metabolismo , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Microbioma Gastrointestinal/genética , Expressão Gênica , Vida Livre de Germes , Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Estearoil-CoA Dessaturase/genética
11.
Exp Eye Res ; 135: 37-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25912194

RESUMO

The lack of plasticity of neurons to respond to dietary changes, such as high fat and high fructose diets, by modulating gene and protein expression has been associated with functional and behavioral impairments that can have detrimental consequences. The inhibition of high fat-induced rewiring of hypothalamic neurons induced obesity. Feeding rodents with high fructose is a recognized and widely used model to trigger obesity and metabolic syndrome. However the adaptive response of the retina to short term feeding with high fructose is poorly documented. We therefore aimed to characterize both the functional and gene expression changes in the neurosensory retina of Brown Norway rats fed during 3 and 8 days with a 60%-rich fructose diet (n = 16 per diet and per time point). Glucose, insulin, leptin, triacylglycerols, total cholesterol, HDL-cholesterol, LDL-cholesterol and fructosamine were quantified in plasma (n = 8 in each group). Functionality of the inner retina was studied using scotopic single flash electroretinography (n = 8 in each group) and the individual response of rod and cone photoreceptors was determined using 8.02 Hz Flicker electroretinography (n = 8 in each group). Analysis of gene expression in the neurosensory retina was performed by Affymetrix genechips, and confirmed by RT-qPCR (n = 6 in each group). Elevated glycemia (+13%), insulinemia (+83%), and leptinemia (+172%) was observed after 8 days of fructose feeding. The cone photoreceptor response was altered at day 8 in high fructose fed rats (Δ = 0.5 log unit of light stimulus intensity). Affymetrix analysis of gene expression highlighted significant modulation of the pathways of eIF2 signaling and endoplasmic reticulum stress, regulation of eIF4 and p70S6K signaling, as well as mTOR signaling and mitochondrial dysfunction. RT-qPCR analysis confirmed the down regulation of Crystallins, Npy, Nid1 and Optc genes after 3 days of fructose feeding, and up regulation of End2. Meanwhile, a trend towards an increased expression of αA- and αB-crystallin proteins was observed at day 8. Our results are consistent with early alterations of the functioning and gene expression in the retina in a pro diabetogenic environment.


Assuntos
Diabetes Mellitus Experimental , Dieta , Carboidratos da Dieta/administração & dosagem , Frutose/administração & dosagem , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Glicemia/análise , Colesterol/sangue , Cristalinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Eletrorretinografia , Estresse do Retículo Endoplasmático/fisiologia , Fator de Iniciação 2 em Eucariotos/fisiologia , Frutosamina/sangue , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insulina/sangue , Leptina/sangue , Masculino , Ratos
12.
PLoS One ; 9(11): e112450, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25380250

RESUMO

Diabetic retinopathy and age-related macular degeneration are the leading causes of blindness in Western populations. Although it is a matter of controversy, large-scale population-based studies have reported increased prevalence of age-related macular degeneration in patients with diabetes or diabetic retinopathy. We hypothesized that metabolic syndrome, one of the major risk factors for type 2 diabetes, would represent a favorable environment for the development of choroidal neovascularization, the main complication of age-related macular degeneration. The fructose-fed rat was used as a model for metabolic syndrome in which choroidal neovascularization was induced by laser photocoagulation. Male Brown Norway rats were fed for 1, 3, and 6 months with a standard equilibrated chow diet or a 60%-rich fructose diet (n = 24 per time point). The animals expectedly developed significant body adiposity (+17%), liver steatosis at 3 and 6 months, hyperleptinemia at 1 and 3 months (two-fold increase) and hyperinsulinemia at 3 and 6 months (up to two-fold increase), but remained normoglycemic and normolipemic. The fructose-fed animals exhibited partial loss of rod sensitivity to light stimulus and reduced amplitude of oscillatory potentials at 6 months. Fructose-fed rats developed significantly more choroidal neovascularization at 14 and 21 days post-laser photocoagulation after 1 and 3 months of diet compared to animals fed the control diet. These results were consistent with infiltration/activation of phagocytic cells and up-regulation of pro-angiogenic gene expression such as Vegf and Leptin in the retina. Our data therefore suggested that metabolic syndrome would exacerbate the development of choroidal neovascularization in our experimental model.


Assuntos
Neovascularização de Coroide/etiologia , Síndrome Metabólica/complicações , Retina/fisiopatologia , Acuidade Visual , Tecido Adiposo/metabolismo , Angiografia/métodos , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Dieta/efeitos adversos , Eletrorretinografia/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Frutose/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Humanos , Insulinoma/etiologia , Fotocoagulação a Laser/efeitos adversos , Masculino , Síndrome Metabólica/etiologia , Ratos Endogâmicos BN , Retina/efeitos dos fármacos , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
PLoS One ; 9(6): e101076, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24963632

RESUMO

OBJECTIVE: Proper development of retinal blood vessels is essential to ensure sufficient oxygen and nutrient supplies to the retina. It was shown that polyunsaturated fatty acids (PUFAs) could modulate factors involved in tissue vascularization. A congenital deficiency in ether-phospholipids, also termed "plasmalogens", was shown to lead to abnormal ocular vascularization. Because plasmalogens are considered to be reservoirs of PUFAs, we wished to improve our understanding of the mechanisms by which plasmalogens regulate retinal vascular development and whether the release of PUFAs by calcium-independent phospholipase A2 (iPLA2) could be involved. METHODS AND RESULTS: By characterizing the cellular and molecular steps of retinal vascular development in a mouse model of plasmalogen deficiency, we demonstrated that plasmalogens modulate angiogenic processes during the early phases of retinal vascularization. They influence glial activity and primary astrocyte template formation, endothelial cell proliferation and retinal vessel outgrowth, and impact the expression of the genes involved in angiogenesis in the retina. These early defects led to a disorganized and dysfunctional retinal vascular network at adult age. By comparing these data to those obtained on a mouse model of retinal iPLA2 inhibition, we suggest that these processes may be mediated by PUFAs released from plasmalogens and further signalling through the angiopoietin/tie pathways. CONCLUSIONS: These data suggest that plasmalogens play a crucial role in retinal vascularization processes.


Assuntos
Astrócitos/citologia , Biomarcadores/metabolismo , Endotélio Vascular/citologia , Plasmalogênios/farmacologia , Retina/citologia , Neovascularização Retiniana/tratamento farmacológico , Vasos Retinianos/citologia , Aciltransferases/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Eletrorretinografia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Perfilação da Expressão Gênica , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/metabolismo , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Retina/efeitos dos fármacos , Retina/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Graefes Arch Clin Exp Ophthalmol ; 250(2): 211-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21894532

RESUMO

BACKGROUND: This study was conducted to evaluate whether polyunsaturated fatty acids (PUFA) such as γ-linolenic acid (GLA) and eicosapentaenoic acid (EPA), as found in the diet, may affect the lipid composition of conjunctival epithelium and whether these modifications affect prostaglandin (PG) production after inflammatory stimulation. METHODS: Chang and IOBA-NHC conjunctival human cells were treated with GLA and/or EPA at 5, 10, 20, 30, 40, or 50 µg/ml for 72 h and then were stimulated with interferon-gamma (IFN-γ) for 48 h. Changes in the composition of neutral lipids and phospholipids were monitored by gas chromatography. PGE1 and PGE2 levels were measured by enzyme immunoassay. RESULTS: PUFA supplementations in the culture medium induced incorporation of these fatty acids and of their metabolites in neutral lipids and phospholipids of the conjunctival cells. The fatty acid composition of neutral lipids and phospholipids was not affected by stimulation with IFN-γ. The production of PGE1 and PGE2 was affected by GLA supplementation whereas it was not modified by EPA supplementation. A combined supplementation of EPA and GLA did not change the production of PGE1 but decreased the production of PGE2. CONCLUSIONS: These results suggest that modulation of fatty acid composition and PG production by PUFA supplementation is possible in the conjunctival epithelium, which is an important site of inflammation in dry eye syndrome.


Assuntos
Alprostadil/metabolismo , Túnica Conjuntiva/efeitos dos fármacos , Dinoprostona/metabolismo , Ácido Eicosapentaenoico/farmacologia , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Ácido gama-Linolênico/farmacologia , Linhagem Celular , Cromatografia Gasosa , Túnica Conjuntiva/citologia , Túnica Conjuntiva/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Técnicas Imunoenzimáticas , Interferon gama/farmacologia
15.
Curr Eye Res ; 32(3): 271-80, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17453947

RESUMO

PURPOSE: Aging is associated with an accumulation of cholesterol esters in the Bruch membrane. Cholesterol esters are prone to undergo oxidation and generate oxysterols that have cytotoxic and proinflammatory properties. We investigated the effects of three oxysterols on mitochondrial dysfunctions, inflammation, and oxidative stress in primary cultures of porcine retinal pigment epithelial (RPE) cells. METHODS: RPE cells were incubated with oxysterols (50 micro M of 24-hydroxycholesterol, 25-hydroxycholesterol, or 7-ketocholesterol) for 24 hr and 48 hr. Oxysterol content was determined in cells and in corresponding media by gas chromatography. Mitochondrial activity was measured by mitochondrial dehydrogenase activity. The intracellular formation of reactive oxygen species in RPE cells was detected by using the fluorescent probe DCFH-DA. IL-8 was assayed in the supernatants by ELISA, and the corresponding cellular transcripts were semiquantified by RT-PCR. RESULTS: Analyses of the oxysterols content in the RPE cells and corresponding media suggested a high rate of cellular uptake, although some differences were observed between 7-ketocholesterol on the one hand and 24-hydroxycholesterol and 25-hydroxycholesterol on the other hand. All oxysterols induced slight mitochondrial dysfunctions but a significant 2- to 4-fold increase in reactive oxygen species (ROS) production compared with the control. They also enhanced IL-8 gene expression and IL-8 protein secretion in the following decreasing order: 25-hydroxycholesterol > 24-hydroxycholesterol > 7-ketocholesterol. CONCLUSIONS: We conclude that in confluent primary porcine RPE cells, 24-hydroxycholesterol, 25-hydroxycholesterol, and 7-ketocholesterol are potent inducers of oxidation and inflammation.


Assuntos
Hidroxicolesteróis/toxicidade , Inflamação/induzido quimicamente , Cetocolesteróis/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado Ocular/efeitos dos fármacos , Animais , Cromatografia Gasosa , Ensaio de Imunoadsorção Enzimática , Fluoresceínas , Corantes Fluorescentes , Interleucina-8/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Epitélio Pigmentado Ocular/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
16.
J Virol ; 76(16): 8040-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12134009

RESUMO

Virus infections induce changes in the expression of host cell genes. A global knowledge of these modifications should help to better understand the virus/host cell interactions. To obtain a more comprehensive view of the rainbow trout response to a viral infection, we used the subtractive suppressive hybridization methodology in the viral hemorrhagic septicemia model of infection. We infected rainbow trout leukocytes with viral hemorrhagic septicemia virus (VHSV), and total RNA from infected and mock-infected cells was compared at 40 h postinfection. Twenty-four virus-induced genes were ultimately retrieved from the subtracted cDNA library, and their differential expression was further confirmed by semiquantitative reverse transcription-PCR and Northern blot analysis. Among these sequences, three were already described as VHSV-induced genes. Eight sequences with known homologs were extended to full-length cDNA using 5' and 3' rapid amplification of cDNA ends, and they were subsequently divided into three functional subsets. Four genes were homologous to mammalian interferon responsive genes, three were similar to chemo-attractant molecules (CXC chemokine, galectin), and two had nucleic acid binding domains. All of the virus-induced genes were also induced by rainbow trout interferon, indicating that the interferon pathway is the predominant component of the anti-VHSV response. They were also expressed in vivo in experimentally infected fish, indicating their biological relevance in natural infection.


Assuntos
Doenças dos Peixes/genética , Oncorhynchus mykiss/genética , Infecções por Rhabdoviridae/veterinária , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Etiquetas de Sequências Expressas , Doenças dos Peixes/imunologia , Expressão Gênica , Técnicas In Vitro , Interferons/biossíntese , Interferons/genética , Leucócitos/metabolismo , Dados de Sequência Molecular , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhabdoviridae/patogenicidade , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/imunologia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...