Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acta Paediatr ; 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39425553

RESUMO

AIM: Current non-invasive near-infrared spectroscopy (NIRS) tissue oximetry suffers from suboptimal reproducibility over probe repositioning, hindering clinical threshold establishment. Time Domain-NIRS (TD-NIRS) offers higher precision but lacks sufficient paediatric data, preventing effective clinical application. We aimed to establish reference ranges for cerebral and mid-upper arm (MUA) tissue haemodynamics in paediatric subjects using TD-NIRS and explore correlations with auxological variables. METHODS: TD-NIRS measurements were conducted acquiring data from cerebral and MUA regions with the NIRSBOX tissue oximeter. Morphological and clinically relevant information were collected to explore potential correlations with TD-NIRS derived parameters. RESULTS: TD-NIRS assessment was applied in 350 children (8.4 ± 5.0 years). Precision of TD-NIRS was demonstrated with standard deviations of 0.9% (StO2) and 4.2 µM (tHb) for frontotemporal cerebral cortex, and 0.8% (StO2) and 3.7 µM (tHb) for MUA. No user dependency was observed. The trends of values for cerebral and peripheral regions vary differently according to age and auxological parameters. CONCLUSION: This study reports resting-state optical and haemodynamic values for a healthy paediatric population, providing a foundation for future investigations into clinically relevant deviations in these parameters. Furthermore, correlations with anthropometric and demographic values provide valuable insights for a deeper understanding of tissue haemodynamic evolution in childhood.

3.
J Vis Exp ; (207)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801263

RESUMO

The detection of levels of impairment in microvascular oxygen consumption and reactive hyperemia is vital in critical care. However, there are no practical means for a robust and quantitative evaluation. This paper describes a protocol to evaluate these impairments using a hybrid near-infrared diffuse optical device. The device contains modules for near-infrared time-resolved and diffuse correlation spectroscopies and pulse-oximetry. These modules allow the non-invasive, continuous, and real-time measurement of the absolute, microvascular blood/tissue oxygen saturation (StO2) and the blood flow index (BFI) along with the peripheral arterial oxygen saturation (SpO2). This device uses an integrated, computer-controlled tourniquet system to execute a standardized protocol with optical data acquisition from the brachioradialis muscle. The standardized vascular occlusion test (VOT) takes care of the variations in the occlusion duration and pressure reported in the literature, while the automation minimizes inter-operator differences. The protocol we describe focuses on a 3-min occlusion period but the details described in this paper can readily be adapted to other durations and cuff pressures, as well as other muscles. The inclusion of an extended baseline and post-occlusion recovery period measurement allows the quantification of the baseline values for all the parameters and the blood/tissue deoxygenation rate that corresponds to the metabolic rate of oxygen consumption. Once the cuff is released, we characterize the tissue reoxygenation rate, magnitude, and duration of the hyperemic response in BFI and StO2. These latter parameters correspond to the quantification of the reactive hyperemia, which provides information about the endothelial function. Furthermore, the above-mentioned measurements of the absolute concentration of oxygenated and deoxygenated hemoglobin, BFI, the derived metabolic rate of oxygen consumption, StO2, and SpO2 provide a yet-to-be-explored rich data set that can exhibit disease severity, personalized therapeutics, and management interventions.


Assuntos
Cuidados Críticos , Hiperemia , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Hiperemia/metabolismo , Humanos , Cuidados Críticos/métodos , Oxigênio/metabolismo , Oxigênio/sangue , Consumo de Oxigênio/fisiologia , Oximetria/métodos , Oximetria/instrumentação , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigação sanguínea , Microcirculação/fisiologia , Microvasos/metabolismo , Saturação de Oxigênio/fisiologia
4.
Physiol Meas ; 44(12)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38061053

RESUMO

Objective.In this paper, we present a detailedin vivocharacterization of the optical and hemodynamic properties of the human sternocleidomastoid muscle (SCM), obtained through ultrasound-guided near-infrared time-domain and diffuse correlation spectroscopies.Approach.A total of sixty-five subjects (forty-nine females, sixteen males) among healthy volunteers and thyroid nodule patients have been recruited for the study. Their SCM hemodynamic (oxy-, deoxy- and total hemoglobin concentrations, blood flow, blood oxygen saturation and metabolic rate of oxygen extraction) and optical properties (wavelength dependent absorption and reduced scattering coefficients) have been measured by the use of a novel hybrid device combining in a single unit time-domain near-infrared spectroscopy, diffuse correlation spectroscopy and simultaneous ultrasound imaging.Main results.We provide detailed tables of the results related to SCM baseline (i.e. muscle at rest) properties, and reveal significant differences on the measured parameters due to variables such as side of the neck, sex, age, body mass index, depth and thickness of the muscle, allowing future clinical studies to take into account such dependencies.Significance.The non-invasive monitoring of the hemodynamics and metabolism of the sternocleidomastoid muscle during respiration became a topic of increased interest partially due to the increased use of mechanical ventilation during the COVID-19 pandemic. Near-infrared diffuse optical spectroscopies were proposed as potential practical monitors of increased recruitment of SCM during respiratory distress. They can provide clinically relevant information on the degree of the patient's respiratory effort that is needed to maintain an optimal minute ventilation, with potential clinical application ranging from evaluating chronic pulmonary diseases to more acute settings, such as acute respiratory failure, or to determine the readiness to wean from invasive mechanical ventilation.


Assuntos
Músculo Esquelético , Espectroscopia de Luz Próxima ao Infravermelho , Masculino , Feminino , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Músculo Esquelético/fisiologia , Pandemias , Oxigênio/metabolismo , Hemodinâmica , Ultrassonografia , Ultrassonografia de Intervenção
5.
Biomed Opt Express ; 14(11): 5994-6015, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021143

RESUMO

In this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations (i.e., frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities. We measured power spectral density (PSD) of blood flow and hemoglobin concentration in four muscles (thenar eminence, plantar fascia, sternocleidomastoid and forearm) of 14 healthy volunteers to highlight possible differences in microvascular hemodynamic oscillations. We observed larger PSDs for blood flow compared to hemoglobin concentration, in particular in case of distal muscles (i.e., thenar eminence and plantar fascia). Finally, we compared the PSDs measured on the thenar eminence of healthy subjects with the ones measured on a septic patient in the intensive care unit: lower power in the endothelial-dependent frequency band, and larger power in the myogenic ones were observed in the septic patient, in accordance with previous works based on laser doppler flowmetry.

6.
Front Vet Sci ; 10: 1243325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789868

RESUMO

Biosensors applied in veterinary medicine serve as a noninvasive method to determine the health status of animals and, indirectly, their level of welfare. Near infrared spectroscopy (NIRS) has been suggested as a technology with this application. This study presents preliminary in vivo time domain NIRS measurements of optical properties (absorption coefficient, reduced scattering coefficient, and differential pathlength factor) and hemodynamic parameters (concentration of oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and tissue oxygen saturation) of tissue domestic animals, specifically of skeletal muscle (4 dogs and 6 horses) and head (4 dogs and 19 sheep). The results suggest that TD NIRS in vivo measurements on domestic animals are feasible, and reveal significant variations in the optical and hemodynamic properties among tissue types and species. In horses the different optical and hemodynamic properties of the measured muscles can be attributed to the presence of a thicker adipose layer over the muscle in the Longissimus Dorsi and in the Gluteus Superficialis as compared to the Triceps Brachii. In dogs the absorption coefficient is higher in the head (temporalis musculature) than in skeletal muscles. The smaller absorption coefficient for the head of the sheep as compared to the head of dogs may suggest that in sheep we are indeed reaching the brain cortex while in dog light penetration can be hindered by the strongly absorbing muscle covering the cranium.

7.
Front Neurosci ; 17: 1202705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539388

RESUMO

Background: Motor disorders are one of the world's major scourges, and neuromotor rehabilitation is paramount for prevention and monitoring plans. In this scenario, exercises and motor tasks to be performed by patients are crucial to follow and assess treatments' progression and efficacy. Nowadays, in clinical environments, quantitative assessment of motor cortex activities during task execution is rare, due to the bulkiness of instrumentation and the need for immobility during measurements [e.g., functional magnetic resonance imaging (MRI)]. Functional near-infrared spectroscopy (fNIRS) can contribute to a better understanding of how neuromotor processes work by measuring motor cortex activity non-invasively in freely moving subjects. Aim: Exploit fNIRS to measure functional activation of the motor cortex area during arm-raising actions. Design: All subjects performed three different upper limbs motor tasks: arm raising (non-goal-oriented), arm raising and grasping (goal oriented), and assisted arm raising (passive task). Each task was repeated ten times. The block design for each task was divided into 5 seconds of baseline, 5 seconds of activity, and 15 seconds of recovery. Population: Sixteen healthy subjects (11 males and 5 females) with an average (+/- standard deviation) of 37.9 (+/- 13.0) years old. Methods: Cerebral hemodynamic responses have been recorded in two locations, motor cortex (activation area) and prefrontal cortex (control location) exploiting commercial time-domain fNIRS devices. Haemodynamic signals were analyzed, separating the brain cortex hemodynamic response from extracerebral hemodynamic variations. Results: The hemodynamic response was recorded in the cortical motor area for goal-oriented and not-goaloriented tasks, while no response was noticed in the control location (prefrontal cortex position). Conclusions: This study provides a basis for canonical upper limb motor cortex activations that can be potentially compared to pathological cerebral responses in patients. It also highlights the potential use of TD-fNIRS to study goal-oriented versus non-goaloriented motor tasks. Impact: the findings of this study may have implications for clinical rehabilitation by providing a better understanding of the neural mechanisms underlying goal-oriented versus non-goal-oriented motor tasks. This may lead to more effective rehabilitation strategies for individuals with motor disorders and a more effective diagnosis of motor dysfunction supported by objective and quantitative neurophysiological readings.

8.
J Biomed Opt ; 27(7)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35701869

RESUMO

SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.


Assuntos
Laboratórios , Óptica e Fotônica , Imagens de Fantasmas , Reprodutibilidade dos Testes , Análise Espectral
9.
Biophys Rep (N Y) ; 1(2): None, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34939046

RESUMO

The single-photon timing and sensitivity performance and the imaging ability of asynchronous-readout single-photon avalanche diode (SPAD) array detectors have opened up enormous perspectives in fluorescence (lifetime) laser scanning microscopy (FLSM), such as super-resolution image scanning microscopy and high-information content fluorescence fluctuation spectroscopy. However, the strengths of these FLSM techniques depend on the many different characteristics of the detector, such as dark noise, photon-detection efficiency, after-pulsing probability, and optical cross talk, whose overall optimization is typically a trade-off between these characteristics. To mitigate this trade-off, we present, to our knowledge, a novel SPAD array detector with an active cooling system that substantially reduces the dark noise without significantly deteriorating any other detector characteristics. In particular, we show that lowering the temperature of the sensor to -15°C significantly improves the signal/noise ratio due to a 10-fold decrease in the dark count rate compared with room temperature. As a result, for imaging, the laser power can be decreased by more than a factor of three, which is particularly beneficial for live-cell super-resolution imaging, as demonstrated in fixed and living cells expressing green-fluorescent-protein-tagged proteins. For fluorescence fluctuation spectroscopy, together with the benefit of the reduced laser power, we show that cooling the detector is necessary to remove artifacts in the correlation function, such as spurious negative correlations observed in the hot elements of the detector, i.e., elements for which dark noise is substantially higher than the median value. Overall, this detector represents a further step toward the integration of SPAD array detectors in any FLSM system.

10.
Biomed Opt Express ; 12(6): 3392-3409, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34221667

RESUMO

We present the LUCA device, a multi-modal platform combining eight-wavelength near infrared time resolved spectroscopy, sixteen-channel diffuse correlation spectroscopy and a clinical ultrasound in a single device. By simultaneously measuring the tissue hemodynamics and performing ultrasound imaging, this platform aims to tackle the low specificity and sensitivity of the current thyroid cancer diagnosis techniques, improving the screening of thyroid nodules. Here, we show a detailed description of the device, components and modules. Furthermore, we show the device tests performed through well established protocols for phantom validation, and the performance assessment for in vivo. The characterization tests demonstrate that LUCA device is capable of performing high quality measurements, with a precision in determining in vivo tissue optical and dynamic properties of better than 3%, and a reproducibility of better than 10% after ultrasound-guided probe repositioning, even with low photon count-rates, making it suitable for a wide variety of clinical applications.

11.
Neurophotonics ; 8(1): 015006, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33628861

RESUMO

Significance: This study is a preliminary step toward the identification of a noninvasive and reliable tool for monitoring the presence and progress of gaiting dysfunctions. Aim: We present the results of a pilot study for monitoring the motor cortex hemodynamic response function (HRF) in freely walking subjects, with time-domain functional near-infrared spectroscopy (TD fNIRS). Approach: A compact and wearable single-channel TD fNIRS oximeter was employed. The lower limb motor cortex area of three healthy subjects was monitored while performing two different freely moving gaiting tasks: forward and backward walking. Results: The time course of oxygenated and deoxygenated hemoglobin was measured during the different walking tasks. Brain motor cortex hemodynamic activations have been analyzed throughout an adaptive HRF fitting procedure, showing a greater involvement of motor area in the backward walking task. By comparison with the HRF obtained in a finger-tapping task performed in a still condition, we excluded any effect of motion artifacts in the gaiting tasks. Conclusions: For the first time to our knowledge, the hemodynamic motor cortex response was measured by TD fNIRS during natural, freely walking exercises. The cortical response during forward and backward walking shows differences, possibly related to the diverse involvement of the motor cortex in the two types of gaiting.

12.
Light Sci Appl ; 10(1): 31, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542179

RESUMO

The combination of confocal laser-scanning microscopy (CLSM) and fluorescence fluctuation spectroscopy (FFS) is a powerful tool in studying fast, sub-resolution biomolecular processes in living cells. A detector array can further enhance CLSM-based FFS techniques, as it allows the simultaneous acquisition of several samples-essentially images-of the CLSM detection volume. However, the detector arrays that have previously been proposed for this purpose require tedious data corrections and preclude the combination of FFS with single-photon techniques, such as fluorescence lifetime imaging. Here, we solve these limitations by integrating a novel single-photon-avalanche-diode (SPAD) array detector in a CLSM system. We validate this new implementation on a series of FFS analyses: spot-variation fluorescence correlation spectroscopy, pair-correlation function analysis, and image-derived mean squared displacement analysis. We predict that the unique combination of spatial and temporal information provided by our detector will make the proposed architecture the method of choice for CLSM-based FFS.

13.
Sensors (Basel) ; 21(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525488

RESUMO

In this work, we present a new multi-distance diffuse correlation spectroscopy (DCS) device integrated with a compact state-of-the-art time domain near infrared spectroscopy (TD-NIRS) device. The hybrid DCS and TD-NIRS system allows to retrieve information on blood flow, tissue oxygenation, and oxygen metabolic rate. The DCS device performances were estimated in terms of stability, repeatability, ability in retrieving variations of diffusion coefficient, influence of the tissue optical properties, effect of varying count rates and depth sensitivity. Crosstalk between DCS and TD-NIRS optical signals was also evaluated. Finally, in vivo experiments (venous and arterial cuff occlusions on the arm) were conducted to test the ability of the hybrid system in measuring blood flow variations.


Assuntos
Hemodinâmica , Oxigênio , Consumo de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho
14.
Biomed Opt Express ; 11(10): 5934-5949, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149997

RESUMO

We present a wearable time-domain near infrared spectroscopy (TD-NIRS) system (two wavelengths, one detection channel), which fits in a backpack and performs real-time hemodynamic measurements on the brain and muscle tissues of freely moving subjects. It can provide concentration values of oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb), total hemoglobin (tHb = O2Hb + HHb) and tissue oxygen saturation (StO2). The system is battery-operated and can be wirelessly controlled. By following established characterization protocols for performance assessment of diffuse optics instruments, we achieved results comparable with state-of-the-art research-grade TD-NIRS systems. We also performed in-vivo measurements such as finger tapping (motor cortex monitoring), breath holding (prefrontal cortex monitoring and forearm muscle monitoring), and outdoor bike riding (vastus lateralis muscle monitoring), in order to test the system capabilities in evaluating both muscle and brain hemodynamics.

15.
Biomed Opt Express ; 11(6): 2905-2924, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32637232

RESUMO

Two-photon excitation (2PE) laser scanning microscopy is the imaging modality of choice when one desires to work with thick biological samples. However, its spatial resolution is poor, below confocal laser scanning microscopy. Here, we propose a straightforward implementation of 2PE image scanning microscopy (2PE-ISM) that, by leveraging our recently introduced single-photon avalanche diode (SPAD) array detector and a novel blind image reconstruction method, is shown to enhance the effective resolution, as well as the overall image quality of 2PE microscopy. With our adaptive pixel reassignment procedure ∼1.6 times resolution increase is maintained deep into thick semi-transparent samples. The integration of Fourier ring correlation based semi-blind deconvolution is shown to further enhance the effective resolution by a factor of ∼2 - and automatic background correction is shown to boost the image quality especially in noisy images. Most importantly, our 2PE-ISM implementation requires no calibration measurements or other input from the user, which is an important aspect in terms of day-to-day usability of the technique.

16.
J Biophotonics ; 12(11): e201900091, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31339649

RESUMO

The autocorrelation of laser speckles from coherent near infrared light is used for noninvasive estimates of relative changes in blood perfusion in techniques such as laser Doppler flowmetry (LDF) and diffuse correlation spectroscopy (DCS). In this study, a 2D array of single photon avalanche diodes (SPADs) was used to combine the strengths of multiple detectors in LDF with high light sensitivity in DCS. The system was tested on milk phantoms with varying detector fiber diameter (200 and 600 µm), source-detector fiber separation (4.6-10.2 mm), fiber-SPAD distance (2.5-36.5 mm), contiguous measurement time per repetition for the autocorrelation (1-33 ms) and temperature (15.6-46.7°C). An in vivo blood occlusion test was also performed. The multipixel approach improved signal-to-noise ratio (SNR) and, in our setup, the use of a multimode detector fiber was beneficial for SNR. In conclusion, the multipixel system works, but improvements and further studies regarding, for example, the data acquisition and optimal settings are still needed.


Assuntos
Fluxometria por Laser-Doppler/instrumentação , Fótons , Análise Espectral/instrumentação , Razão Sinal-Ruído
17.
Nat Methods ; 16(2): 175-178, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643212

RESUMO

Image scanning microscopy (ISM) can improve the effective spatial resolution of confocal microscopy to its theoretical limit. However, current implementations are not robust or versatile, and are incompatible with fluorescence lifetime imaging (FLIM). We describe an implementation of ISM based on a single-photon detector array that enables super-resolution FLIM and improves multicolor, live-cell and in-depth imaging, thereby paving the way for a massive transition from confocal microscopy to ISM.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Algoritmos , Animais , Biologia Computacional , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Poro Nuclear/metabolismo , Imagem Óptica , Fótons , Software , Tubulina (Proteína)/química
18.
Biomed Opt Express ; 9(1): 322-334, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29359106

RESUMO

Speckle contrast optical spectroscopy (SCOS) measures absolute blood flow in deep tissue, by taking advantage of multi-distance (previously reported in the literature) or multi-exposure (reported here) approach. This method promises to use inexpensive detectors to obtain good signal-to-noise ratio, but it has not yet been implemented in a suitable manner for a mass production. Here we present a new, compact, low power consumption, 32 by 2 single photon avalanche diode (SPAD) array that has no readout noise, low dead time and has high sensitivity in low light conditions, such as in vivo measurements. To demonstrate the capability to measure blood flow in deep tissue, healthy volunteers were measured, showing no significant differences from the diffuse correlation spectroscopy. In the future, this array can be miniaturized to a low-cost, robust, battery operated wireless device paving the way for measuring blood flow in a wide-range of applications from sport injury recovery and training to, on-field concussion detection to wearables.

19.
Microsc Res Tech ; 79(9): 785-91, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27380867

RESUMO

The spatial resolution of a stimulated emission depletion (STED) microscope is theoretically unlimited and practically determined by the signal-to-noise ratio. Typically, an increase of the STED beam's power leads to an improvement of the effective resolution. However, this improvement may vanish because an increased STED beam's power is often accompanied by an increased photobleaching, which worsen the effective resolution by reducing the signal strength. A way to lower the photobleaching in pulsed STED (P-STED) implementations is to reduce the peak intensity lengthening the pulses duration (for a given average STED beam's power). This also leads to a reduction of the fluorophores quenching, thus a reduction of the effective resolution, but the time-gated detection was proved to be successful in recovering these reductions. Here we demonstrated that a subnanosecond fiber laser beam (pulse width ∼600 ps) reduces the photobleaching with respect to a traditional stretched hundreds picosecond (∼200 ps) beam provided by a Ti:Sapphire laser, without any effective spatial resolution lost.

20.
Opt Express ; 23(16): 20997-1011, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26367952

RESUMO

By using time-of-flight information encoded in multiply scattered light, it is possible to reconstruct images of objects hidden from the camera's direct line of sight. Here, we present a non-line-of-sight imaging system that uses a single-pixel, single-photon avalanche diode (SPAD) to collect time-of-flight information. Compared to earlier systems, this modification provides significant improvements in terms of power requirements, form factor, cost, and reconstruction time, while maintaining a comparable time resolution. The potential for further size and cost reduction of this technology make this system a good base for developing a practical system that can be used in real world applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...