Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Curr Protoc ; 4(6): e1067, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857108

RESUMO

The blood-brain barrier (BBB) constitutes a crucial protective anatomical layer with a microenvironment that tightly controls material transit. Constructing an in vitro BBB model to replicate in vivo features requires the sequential layering of constituent cell types. Maintaining heightened integrity in the observed tight junctions during both the establishment and post-experiment phases is crucial to the success of these models. We have developed an in vitro BBB model that replicates the cellular composition and spatial orientation of in vivo BBB observed in humans. The experiment includes comprehensive procedures and steps aimed at enhancing the integration of the four-cell model. Departing from conventional in vitro BBB models, our methodology eliminates the necessity for pre-coated plates to facilitate cell adhesion, thereby improving cell visualization throughout the procedure. An in-house coating strategy and a simple yet effective approach significantly reduce costs and provides superior imaging of cells and corresponding tight junction protein expression. Also, our BBB model includes all four primary cell types that are structural parts of the human BBB. With its innovative and user-friendly features, our in-house optimized in vitro four-cell-based BBB model showcases novel methodology and provides a promising experimental platform for drug screening processes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Coating and culture system Basic Protocol 2: Cell seeding and Transwell insert handling Basic Protocol 3: Assessment of model functionality.


Assuntos
Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Junções Íntimas/metabolismo , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Encéfalo/citologia , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo
2.
medRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38883728

RESUMO

Background: Dengue is a vector-borne viral disease impacting millions across the globe. Nevertheless, akin to many other diseases, reports indicated a decline in dengue incidence and seroprevalence during the COVID-19 pandemic (2020-22). This presumably could be attributed to reduced treatment-seeking rates, under-reporting, misdiagnosis, disrupted health services and reduced exposure to vectors due to lockdowns. Scientific evidence on dengue virus (DENV) disease during the COVID-19 pandemic is limited globally. Methods: A cross-sectional, randomized cluster sampling community-based survey was carried out to assess anti-dengue IgM and IgG and SARS-CoV-2 IgG seroprevalence across all 38 districts of Tamil Nadu, India. The prevalence of DENV in the Aedes mosquito pools during 2021 was analyzed and compared with previous and following years of vector surveillance for DENV by real-time PCR. Findings: Results implicate that both DENV-IgM and IgG seroprevalence and mosquito viral positivity were reduced across all the districts. A total of 13464 mosquito pools and 5577 human serum samples from 186 clusters were collected. Of these, 3·76% of mosquito pools were positive for DENV. In the human sera, 4·12% were positive for DENV IgM and 6·4% were positive for DENV IgG. The anti-SARS-CoV-2 antibody titres correlated with dengue seropositivity with a significant association whereas vaccination status significantly correlated with dengue IgM levels. Interpretation: Continuous monitoring of DENV seroprevalence, especially with the evolving variants of the SARS-CoV-2 virus and surge in COVID-19 cases will shed light on the transmission and therapeutic attributes of dengue infection.

3.
Mol Psychiatry ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879719

RESUMO

Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.

4.
Cell Death Dis ; 15(6): 428, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890285

RESUMO

Neuroblastoma (NB) is a highly aggressive pediatric cancer that originates from immature nerve cells, presenting significant treatment challenges due to therapy resistance. Despite intensive treatment, approximately 50% of high-risk NB cases exhibit therapy resistance or experience relapse, resulting in poor outcomes often associated with tumor immune evasion. B7-H3 is an immune checkpoint protein known to inhibit immune responses. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. Our study aims to explore the impact of miRNAs on B7-H3 regulation, the anti-tumor immune response, and tumorigenicity in NB. Analysis of NB patients and patient-derived xenograft tumors revealed a correlation between higher B7-H3 expression and poorer patient survival. Notably, deceased patients exhibited a depletion of miR-29 family members (miR-29a, miR-29b, and miR-29c), which displayed an inverse association with B7-H3 expression in NB patients. Overexpression and knockdown experiments demonstrated that these miRNAs degrade B7-H3 mRNA, resulting in enhanced NK cell activation and cytotoxicity. In vivo, experiments provided further evidence that miR-29 family members reduce tumorigenicity, macrophage infiltration, and microvessel density, promote infiltration and activation of NK cells, and induce tumor cell apoptosis. These findings offer a rationale for developing more effective combination treatments that leverage miRNAs to target B7-H3 in NB patients.


Assuntos
Antígenos B7 , Células Matadoras Naturais , MicroRNAs , Neuroblastoma , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Antígenos B7/metabolismo , Antígenos B7/genética , Neuroblastoma/genética , Neuroblastoma/imunologia , Neuroblastoma/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Feminino , Masculino , Ativação Linfocitária
5.
Sci Rep ; 14(1): 10709, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729980

RESUMO

Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.


Assuntos
Leucócitos Mononucleares , Ritonavir , SARS-CoV-2 , Animais , Ratos , Ritonavir/farmacocinética , SARS-CoV-2/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Humanos , Masculino , Encéfalo/metabolismo , Encéfalo/virologia , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , COVID-19/líquido cefalorraquidiano , Antivirais/farmacocinética , Antivirais/farmacologia , Ratos Sprague-Dawley , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/virologia
6.
Mol Ther Nucleic Acids ; 35(2): 101543, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38817681

RESUMO

Neuroblastoma is the most devastating extracranial solid malignancy in children. Despite an intense treatment regimen, the prognosis for high-risk neuroblastoma patients remains poor, with less than 40% survival. So far, MYCN amplification status is considered the most prognostic factor but corresponds to only ∼25% of neuroblastoma patients. Therefore, it is essential to identify a better prognosis and therapy response marker in neuroblastoma patients. We applied robust bioinformatic data mining tools, such as weighted gene co-expression network analysis, cisTarget, and single-cell regulatory network inference and clustering on two neuroblastoma patient datasets. We found Sin3A-associated protein 30 (SAP30), a driver transcription factor positively associated with high-risk, progression, stage 4, and poor survival in neuroblastoma patient cohorts. Tumors of high-risk neuroblastoma patients and relapse-specific patient-derived xenografts showed higher SAP30 levels. The advanced pharmacogenomic analysis and CRISPR-Cas9 screens indicated that SAP30 essentiality is associated with cisplatin resistance and further showed higher levels in cisplatin-resistant patient-derived xenograft tumor cell lines. Silencing of SAP30 induced cell death in vitro and led to a reduced tumor burden and size in vivo. Altogether, these results indicate that SAP30 is a better prognostic and cisplatin-resistance marker and thus a potential drug target in high-risk neuroblastoma.

7.
Antiviral Res ; 227: 105904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729306

RESUMO

Despite considerable progress in developing vaccines and antivirals to combat COVID-19, the rapid mutations of the SARS-CoV-2 genome have limited the durability and efficacy of the current vaccines and therapeutic interventions. Hence, it necessitates the development of novel therapeutic approaches or repurposing existing drugs that target either viral life cycle, host factors, or both. Here, we report that SRX3177, a potent triple-activity CDK4/6-PI3K-BET inhibitor, blocks replication of the SARS-CoV-2 Omicron variant with IC50 values at sub-micromolar concentrations without any impact on the cell proliferation of Calu-3 cells at and below its IC50 concentration. When SRX3177 is combined with EIDD-1931 (active moiety of a small-molecule prodrug Molnupiravir) or MU-UNMC-2 (a SARS-CoV-2 entry inhibitor) at a fixed doses matrix, a synergistic effect was observed, leading to the significant reduction in the dose of the individual compounds to achieve similar inhibition of SARS-CoV-2 replication. Herein, we report that the combination of SRX3177/MPV or SRX3177/UM-UNMC-2 has the potential for further development as a combinational therapy against SARS-CoV-2 and in any future outbreak of beta coronavirus.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Citidina/análogos & derivados , Citidina/farmacologia , Hidroxilaminas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Internalização do Vírus/efeitos dos fármacos , Chlorocebus aethiops , Animais , Leucina/análogos & derivados , Leucina/farmacologia , Células Vero , Sinergismo Farmacológico , Linhagem Celular , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , COVID-19/virologia
8.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699322

RESUMO

In December 2023, we observed a notable shift in the COVID-19 landscape, when the JN.1 emerged as a predominant SARS-CoV-2 variant with a 95% incidence. We characterized the clinical profile, and genetic changes in JN.1, an emerging SARS-CoV-2 variant of interest. Whole genome sequencing was performed on SARS-CoV-2 positive samples, followed by sequence analysis. Mutations within the spike protein sequences were analyzed and compared with the previous lineages and sublineages of SARS-CoV-2, to identify the potential impact of these unique mutations on protein structure and possible functionality. Several unique and dynamic mutations were identified herein. Our data provides key insights into the emergence of newer variants of SARS-CoV-2 in our region and highlights the need for robust and sustained genomic surveillance of SARS-CoV-2.

9.
Biomed J ; : 100746, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734408

RESUMO

Mpox is a zoonotic disease caused by the monkeypox virus (MPV), primarily found in Central and West African countries. The typical presentation of the disease before the 2022 mpox outbreak includes a febrile prodrome 5-13 days post-exposure, accompanied by lymphadenopathy, malaise, headache, and muscle aches. Unexpectedly, during the 2022 outbreak, several cases of atypical presentations of the disease were reported, such as the absence of prodromal symptoms and the presence of genital skin lesions suggestive of sexual transmission. As per the World Health Organization (WHO), as of March 20, 2024, 94,707 cases of mpox were reported worldwide, resulting in 181 deaths (22 in African endemic regions and 159 in non-endemic countries). The United States Centers for Disease Control and Prevention (CDC) reports a total of 32,063 cases (33.85% of total cases globally), with 58 deaths (32.04% of global deaths) due to mpox. Person-to-person transmission of mpox can occur through respiratory droplets and sustained close contact. However, during the 2022 outbreak of mpox, a high incidence of anal and perianal lesions among MSMs indicated sexual transmission of MPV as a major route of transmission. Since MSMs are disproportionately at risk for HIV transmission, this review discusses the risk factors, transmission patterns, pathogenesis, vaccine, and treatment options for mpox among MSM and people living with HIV (PLWH). Furthermore, we provide a brief perspective on the evolution of the MPV in immunocompromised people like PLWH.

10.
Front Immunol ; 15: 1336480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444848

RESUMO

Introduction: Alterations in the gut immune system have been implicated in various diseases.The challenge of obtaining gut tissues from healthy individuals, commonly performed via surgical explants, has limited the number of studies describing the phenotype and function of gut-derived immune cells in health. Methods: Here, by means of recto-sigmoid colon biopsies obtained during routine care (colon cancer screening in healthy adults), the phenotype and function of immune cells present in the gut were described and compared to those found in blood. Results: The proportion of CD4+, CD8+, MAIT, γδ+ T, and NK cells phenotype, expression of integrins, and ability to produce cytokine in response to stimulation with PMA and ionomycin. T cells in the gut were found to predominantly have a memory phenotype as compared to T cells in blood where a naïve phenotype predominates. Recto-sigmoid mononuclear cells also had higher PD-1 and Ki67 expression. Furthermore, integrin expression and cytokine production varied by cell type and location in blood vs. gut. Discussion: These findings demonstrate the differences in functionality of these cells when compared to their blood counterparts and validate previous studies on phenotype within gut-derived immune cells in humans (where cells have been obtained through surgical means). This study suggests that recto-sigmoid biopsies collected during colonoscopy can be a reliable yet more accessible sampling method for follow up of alterations of gut derived immune cells in clinical settings.


Assuntos
Leucócitos Mononucleares , Leucócitos , Adulto , Humanos , Contagem de Leucócitos , Fenótipo , Meios de Contraste , Citocinas , Integrinas
11.
J Genet Eng Biotechnol ; 22(1): 100347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494253

RESUMO

Emergences of SARS-CoV-2 variants have made the pandemic more critical. Toll-like receptor 4 (TLR4) recognizes the molecular patterns of pathogens and activates the production of proinflammatory cytokines to restrain the infection. We have identified a molecular basis of interaction between the Spike and TLR4 of SARS-CoV-2 and its present and past VOCs (variant- of concern) through in silico analysis. The interaction of wild type Spike with TLR4 showed 15 number hydrogen bonds formation. Similarly, the Alpha variants' Spike with the TLR4 has illustrated that 14 hydrogen bonds participated in the interaction. However, the Delta Spike and TLR4 interaction interface showed that 17 hydrogen bonds were formed during the interaction. Furthermore, Omicron S-glycoprotein and TLR4 interaction interface was depicted (interaction score: -170.3), and 16 hydrogen bonds were found to have been formed in the interaction. Omicron S-glycoprotein shows stronger binding affinity with the TLR4 than wild type, Alpha, and Delta variants. Similarly, the Alpha Spike shows higher binding affinity with TLR4 than the wild type and Delta variant. Now, it is an open question of the molecular basis of the interaction of Spike and TLR4 and the activated downstream signaling events of TLR4 for SARS-CoV-2 and its variants.

12.
J Med Virol ; 96(2): e29456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329187

RESUMO

A state-wide prospective longitudinal investigation of the genomic surveillance of the omicron B.1.1.529 SARS-CoV-2 variant and its sublineages in Tamil Nadu, India, was conducted between December 2021 and March 2023. The study aimed to elucidate their mutational patterns and their genetic interrelationship in the Indian population. The study identified several unique mutations at different time-points, which likely could attribute to the changing disease characteristics, transmission, and pathogenicity attributes of omicron variants. The study found that the omicron variant is highly competent in its mutating potentials, and that it continues to evolve in the general population, likely escaping from natural as well as vaccine-induced immune responses. Our findings suggest that continuous surveillance of viral variants at the global scenario is warranted to undertake intervention measures against potentially precarious SARS-CoV-2 variants and their evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Índia/epidemiologia , Estudos Longitudinais , Estudos Prospectivos , COVID-19/epidemiologia , Genômica
13.
Ann Med ; 56(1): 2315224, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38353210

RESUMO

BACKGROUND: Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection is associated with significant gut damage, similar to that observed in patients with inflammatory bowel disease (IBD). This pathology includes loss of epithelial integrity, microbial translocation, dysbiosis, and resultant chronic immune activation. Additionally, the levels of all-trans-retinoic acid (atRA) are dramatically attenuated. Data on the therapeutic use of anti-α4ß7 antibodies has shown promise in patients with ulcerative colitis and Crohn's disease. Recent evidence has suggested that the microbiome and short-chain fatty acid (SCFA) metabolites it generates may be critical for anti-α4ß7 efficacy and maintaining intestinal homeostasis. MATERIALS AND METHODS: To determine whether the microbiome contributes to gut homeostasis after anti-α4ß7 antibody administered to SIV-infected rhesus macaques, faecal SCFA concentrations were determined, 16S rRNA sequencing was performed, plasma viral loads were determined, plasma retinoids were measured longitudinally, and gut retinoid synthesis/response gene expression was quantified. RESULTS: Our results suggest that anti-α4ß7 antibody facilitates the return of retinoid metabolism to baseline levels after SIV infection. Furthermore, faecal SCFAs were shown to be associated with retinoid synthesis gene expression and rebound viral loads after therapy interruption. CONCLUSIONS: Taken together, these data demonstrate the therapeutic advantages of anti-α4ß7 antibody administration during HIV/SIV infection and that the efficacy of anti-α4ß7 antibody may depend on microbiome composition and SCFA generation.


Assuntos
Infecções por HIV , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , Macaca mulatta/genética , Macaca mulatta/metabolismo , RNA Ribossômico 16S/genética , Integrinas/metabolismo , Integrinas/uso terapêutico , Retinoides/uso terapêutico
14.
Expert Opin Investig Drugs ; 33(2): 85-93, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235744

RESUMO

INTRODUCTION: Islatravir (ISL) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) that inhibits HIV RT through multiple mechanisms. Contrary to all approved NtRTIs, islatravir retains a 3'OH group. In vitro and clinical data show that ISL is an ultrapotent investigational drug with high tolerability. AREAS COVERED: The historical development of islatravir and its mechanisms of HIV and HBV inhibition and resistance are covered. Additionally, the outcomes of Phase I and Phase II clinical trials are discussed. EXPERT OPINION: Current first-line antiretroviral therapy, preexposure, and postexposure prophylactic interventions are highly effective in maintaining low or undetectable viral load. Despite these measures, an unusually high rate of new infections every year warrants developing novel antivirals that can suppress drug-resistant HIV and improve compliance. ISL, an NRTTI once deemed a long-acting drug, was placed on a clinical hold. The outcome of ongoing clinical trials with a reduced ISL dose will decide its future clinical application. Additionally, MK-8527, which inhibits HIV via same mechanism as that of ISL may supersede ISL. Data on ISL inhibition of HBV are scarce, and preclinical data show dramatically lower ISL efficacy against HBV than currently preferred nucleos(t)ide drugs, indicating that ISL may not be a potent anti-HBV drug.


Assuntos
Fármacos Anti-HIV , Desoxiadenosinas , Infecções por HIV , Humanos , Fármacos Anti-HIV/farmacologia , Vírus da Hepatite B , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/efeitos adversos
15.
Lancet Reg Health Southeast Asia ; 19: 100272, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076717

RESUMO

Background: Despite the continued vaccination efforts, there had been a surge in breakthrough infections, and the emergence of the B.1.1.529 omicron variant of SARS-CoV-2 in India. There is a paucity of information globally on the role of newer XBB variants in community transmission. Here, we investigated the mutational patterns among hospitalised patients infected with the XBB omicron sub-variant, and checked if there was any association between the rise in the number of COVID-19 cases and the observed novel mutations in Tamil Nadu, India. Methods: Nasopharyngeal and oropharyngeal swabs, collected from symptomatic and asymptomatic COVID-19 patients were subjected to real-time PCR followed by Next Generation Sequencing (NGS) to rule out the ambiguity of mutations in viruses isolated from the patients (n = 98). Using the phylogenetic association, the mutational patterns were used to corroborate clinico-demographic characteristics and disease severity among the patients. Findings: Overall, we identified 43 mutations in the S gene across 98 sequences, of which two were novel mutations (A27S and T747I) that have not been reported previously with XBB sub-variants in the available literature. Additionally, the XBB sequences from our cohort had more mutations than omicron B.1.1.529. The phylogenetic analysis comprising six major branches clearly showed convergent evolution of XBB. Our data suggests that age, and underlying conditions (e.g., diabetes, hypertension, and cardiovascular disease) or secondary complications confers increased susceptibility to infection rather than vaccination status or prior exposure. Many vaccinated individuals showed evidence of a breakthrough infection, with XBB.3 being the predominant variant identified in the study population. Interpretation: Our study indicates that the XBB variant is highly evasive from available vaccines and may be more transmissible, and potentially could emerge as the 'next' predominant variant, which likely could overwhelm the existing variants of SARS-CoV-2 omicron variants. Funding: National Health Mission (India), SIDASARC, VINNMER (Sweden), ORIP/NIH (USA).

16.
PLOS Glob Public Health ; 3(11): e0002327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992019

RESUMO

Early detection of latent tuberculosis infection (LTBI) is critical to TB elimination in the current WHO vision of End Tuberculosis Strategy. The study investigates whether detecting plasma cytokines could aid in diagnosing LTBI across household contacts (HHCs) positive for IGRA, HHCs negative for IGRA, and healthy controls. The plasma cytokines were measured using a commercial Bio-Plex Pro Human Cytokine 17-plex assay. Increased plasma CXCL8 and decreased MCP-1, TNF-α, and IFN-γ were associated with LTBI. Regression analysis showed that a combination of CXCL8 and MCP-1 increased the risk of LTBI among HHCs to 14-fold. Our study suggests that CXCL-8 and MCP-1 could serve as the surrogate biomarkers of LTBI, particularly in resource-limited settings. Further laboratory investigations are warranted before extrapolating CXCL8 and MCP-1 for their usefulness as surrogate biomarkers of LTBI in resource-limited settings.

17.
Biomedicines ; 11(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37893004

RESUMO

Historically, cannabis has been valued for its pain-relieving, anti-inflammatory, and calming properties. Ancient civilizations like the Egyptians, Greeks, and Chinese medicines recognized their therapeutic potential. The discovery of the endocannabinoid system, which interacts with cannabis phytoconstituents, has scientifically explained how cannabis affects the human immune system, including the central nervous system (CNS). This review explores the evolving world of cannabis-based treatments, spotlighting its diverse applications. By researching current research and clinical studies, we probe into how cannabinoids like Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) help to manage conditions ranging from chronic pain, persistent inflammation, cancer, inflammatory bowel disease, and neurological disorders to even viral diseases such as Human Immunodeficiency virus (HIV), SARS-CoV-2. and the emerging monkeypox. The long-term recreational use of cannabis can develop into cannabis use disorder (CUD), and therefore, understanding the factors contributing to the development and maintenance of cannabis addiction, including genetic predisposition, neurobiological mechanisms, and environmental influences, will be timely. Shedding light on the adverse impacts of CUD underscores the importance of early intervention, effective treatment approaches, and public health initiatives to address this complex issue in an evolving landscape of cannabis policies and perceptions.

18.
Ecotoxicol Environ Saf ; 264: 115487, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729804

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted human-to-human via aerosols and air-borne droplets. Therefore, capturing and destroying viruses from indoor premises are essential to reduce the probability of human exposure and virus transmission. While the heating, ventilation, and air conditioning (HVAC) systems help in reducing the indoor viral load, a targeted approach is required to effectively remove SARS-CoV-2 from indoor air to address human exposure concerns. The present study demonstrates efficient trapping and destruction of SARS-CoV-2 via nano-enabled filter technology using the UV-A-stimulated photoelectrochemical oxidation (PECO) process. Aerosols containing SARS-CoV-2 were generated by nebulization inside an air-controlled test chamber where an air purifier (Air Mini+) was placed. The study demonstrated the efficient removal of SARS-CoV-2 (99.98 %) from the test chamber in less than two minutes and PECO-assisted destruction (over 99%) on the filtration media in 1 h. Furthermore, in a real-world scenario, the Molekule Air-Pro air purifier removed SARS-CoV-2 (a negative RT-qPCR result post-running the filter device) from the circulating air in a COVID-19 testing facility. Overall, the ability of two FDA-approved class II medical devices, Molekule Air-Mini+ and Air-Pro air purifiers, to remove and destroy SARS-CoV-2 in indoor settings was successfully demonstrated. The study indicates that as the "tripledemic" of COVID-19, influenza, and respiratory syncytial virus (RSV) overwhelm the healthcare facilities in the USA, the use of a portable air filtration device will help contain the spread of the viruses in close door facilities, such as in schools and daycare facilities.


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , SARS-CoV-2 , Teste para COVID-19 , Aerossóis e Gotículas Respiratórios , Poluição do Ar em Ambientes Fechados/prevenção & controle
19.
medRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609153

RESUMO

Background: Early detection of latent tuberculosis infection (LTBI) is critical to TB elimination in the current WHO vision of End Tuberculosis Strategy. Methods: We investigated whether detecting plasma cytokines could aid in diagnosing LTBI across household contacts (HHCs) positive for IGRA, HHCs negative for IGRA, and healthy controls. We also measured the plasma cytokines using a commercial Bio-Plex Pro Human Cytokine 17-plex assay. Results: Increased plasma CXCL8 and decreased MCP-1, TNF-α, and IFN-γ were associated with LTBI. Regression analysis showed that a combination of CXCL8 and MCP-1 increased the risk of LTBI among HHCs to 14-fold. Conclusions: We postulated that CXCL8 and MCP-1 could be the surrogate biomarkers of LTBI, especially in resource-limited settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...