RESUMO
AIMS: To estimate the prevalence of carbapenemase-producing Enterobacterales (CPE) carriage among pets using faecal specimens submitted to veterinary diagnostic laboratories throughout the US. A secondary aim was to employ whole-genome sequencing (WGS) to characterize isolates of CPE from companion animals and compare them to publicly available CPE genomes. METHODS AND RESULTS: To estimate the prevalence of CPE in companion animals in the USA, a multicenter surveillance study including 8 different veterinary diagnostic laboratories from across the USA was conducted. Briefly, remnant faecal specimens from dogs and cats were screened using two selective agar plates (CHROMID Carba and MacConkey with 1 mg/L cefotaxime and 0.125 mg/L meropenem) and presumptive CPE isolates screened by the modified carbapenemase inactivation method for carbapenemase production. A total of 2393 specimens were screened and yielded 196 isolates for carbapenemase screening. A total of 5 isolates from 4 dogs and 1 cat at 3 different veterinary diagnostic laboratories were confirmed to produce a carbapenemase (0.21%). Whole-genome sequencing (WGS) revealed two E. coli (ST167) isolates that both produced an NDM-5 carbapenemase, two Enterobacter hormaechei (ST171) isolates that produced an NDM-5 carbapenemase and a KPC-4 carbapenemase respectively and one Klebsiella oxytoca (ST199) that produced an Oxa-48-type carbapenemase. Both E. coli isolates were found to be within at least 22 SNPs of previously characterized canine and human CPE isolates. CONCLUSIONS: This study demonstrates that the prevalence of CPE among companion animals is relatively low (0.21%) but that given the genetic relatedness of animal isolates to human isolates, additional surveillance is needed.
Assuntos
Proteínas de Bactérias , Doenças do Gato , Doenças do Cão , Infecções por Enterobacteriaceae , Fezes , beta-Lactamases , Animais , Cães , Gatos , Fezes/microbiologia , Estados Unidos/epidemiologia , Doenças do Cão/microbiologia , Doenças do Cão/epidemiologia , Doenças do Gato/microbiologia , Doenças do Gato/epidemiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Prevalência , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Epidemiologia Molecular , Antibacterianos/farmacologia , Sequenciamento Completo do GenomaRESUMO
Accurate isolation and identification of pathogens for an animal with bovine respiratory disease are of critical importance to direct appropriate decision-making related to the treatment of individual animals, as well as control and prevention options in a herd setting. The objective of this study was to compare nasopharyngeal sampling approaches to evaluate accuracy and agreement for the recovery of Mannheimia haemolytica (MH) and Pasteurella multocida (PM) from deep nasopharyngeal swabs (DNS) using 3 different swabs. Deep nasopharyngeal samples were collected from 45 dairy calves using 3 swabs: (1) double-guarded culture swab (DGS); (2) single-guarded culture swab (SGS); and (3) unguarded culture swab (UGS). To evaluate the degree of agreement between DGS, SGS, and UGS, culture results were compared for each calf sampled by using a kappa agreement test. Overall, findings from our study support that when using either SGS or DGS for DNS sampling of preweaning calves, a high agreement for recovery of PM is observed. A low recovery of MH was observed in the study, limiting the conclusion comparing the 3 DNS methods. Use of UGS is considered a potential alternative; however, a higher percentage of polymicrobial growth was found with UGS samples.
RESUMO
BACKGROUND: Giardia duodenalis (Gd) causes intestinal parasitosis. The involvement of the intestinal microbiome in determining the infection's clinical phenotype is unknown. OBJECTIVE: Investigate the fecal microbiome features in dogs with giardiasis. ANIMALS AND METHODS: Cross-sectional study, including fecal samples of kenneled dogs with Gd diagnosed by fecal Giardia antigen dot ELISA. The fecal microbial compositional characteristics and dysbiosis index (DI) were compared between diarrheic and nondiarrheic dogs. RESULTS: Fecal samples of 38 Gd-infected dogs (diarrheic, 21; nondiarrheic, 17) were included. No differences were found in Faith's phylogenic diversity and beta diversity (weighted UniFrac distances) and in specific taxa abundances at the phylum, genus, and species levels, as well as in alpha and beta diversities between diarrheic and nondiarrheic dogs, and also when divided by sex or age. Among diarrheic dogs, alpha diversity was higher in males than in females (pairwise Kruskal-Wallis, q = 0.01). Among males, fecal abundances of the genus Clostridium (W = 19) and Clostridium spiroforme species (W = 33) were higher in diarrheic compared to nondiarrheic dogs. In diarrheic dog fecal samples, Proteobacteria were more prevalent (W = 1), whereas Verrucomicrobia were less prevalent in dogs <1 year of age than in older dogs. The fecal sample DI of 19 diarrheic and 19 nondiarrheic dogs was similar (median, -0.2; range, -4.3 to 4.5 and median, -1.0; range, -4.3 to 5.8, respectively). CONCLUSIONS: The fecal microbial composition of symptomatic and asymptomatic dogs with giardiasis is similar. Based on fecal DI, giardiasis is not characterized by prominent dysbiosis. Other host and parasite characteristics might determine the severity of giardiasis in dogs.
Assuntos
Doenças do Cão , Giardíase , Microbiota , Masculino , Feminino , Animais , Cães , Giardíase/veterinária , Giardíase/diagnóstico , Estudos Transversais , Disbiose/veterinária , Diarreia/veterinária , Diarreia/microbiologia , Fezes/microbiologia , Doenças do Cão/diagnósticoRESUMO
Escherichia coli is the most common cause of recurrent urinary tract infection (UTI) in dogs. UTI recurrence comprises of persistent, unresolved E. coli infection or reinfection with a different strain of E. coli. Differentiating between these processes is clinically important but is often impossible with routine diagnostics. We tested the hypothesis that most recurrent canine E. coli bacteriuria is due to recurrence of the same E. coli strain involved in the initial infection. Molecular typing was performed on 98 urinary E. coli isolated from dogs with recurrent bacteriuria from five veterinary diagnostic laboratories in the United States. Of the 42 dogs in this study with multiple E. coli bacteriuria observations, a single strain of E. coli caused recurrent bacteriuria in 26 (62 %) dogs, in some cases on multiple occasions for prolonged periods of time (up to eight months). A single E. coli strain was detected during both subclinical bacteriuria and clinically-apparent UTI in three dogs. Isolates with the P-fimbrial adhesin genes papA and papC were associated with recurrence by the same strain of E. coli. Multiple isolations of a single strain of E. coli associated with recurrent bacteriuria suggests that E. coli may be maintained within the urinary tract of some dogs for prolonged periods of time. In some patients, the same strain can cause both clinical UTI and subclinical bacteriuria. This indicates that in dogs, the urinary bladder may serve as a subclinical, long-term reservoir of E. coli that may cause clinical UTI in the future.
Assuntos
Bacteriúria , Doenças do Cão , Infecções por Escherichia coli , Infecções Urinárias , Humanos , Cães , Animais , Bacteriúria/veterinária , Escherichia coli/genética , Infecções Urinárias/veterinária , Infecções por Escherichia coli/veterinária , Bexiga Urinária , Doenças do Cão/diagnósticoRESUMO
BACKGROUND: The goal of this study was to assess the microbial ecology and diversity present in the uterus of post-partum dairy cows with and without metritis from 24 commercial California dairy farms using shotgun metagenomics. A set subset of 95 intrauterine swab samples, taken from a larger selection of 307 individual cow samples previously collected, were examined for α and ß diversity and differential abundance associated with metritis. Cows within 21 days post-partum were categorized into one of three clinical groups during sample collection: control (CT, n = 32), defined as cows with either no vaginal discharge or a clear, non-purulent mucus vaginal discharge; metritis (MET, n = 33), defined as a cow with watery, red or brown colored, and fetid vaginal discharge; and purulent discharge cows (PUS, n = 31), defined as a non-fetid purulent or mucopurulent vaginal discharge. RESULTS: All three clinical groups (CT, MET, and PUS) were highly diverse, with the top 12 most abundant genera accounting for 10.3%, 8.8%, and 10.1% of mean relative abundance, respectively. The α diversity indices revealed a lower diversity from samples collected from MET and PUS when compared to CT cows. PERMANOVA statistical testing revealed a significant difference (P adjusted < 0.01) in the diversity of genera between CT and MET samples (R2 = 0.112, P = 0.003) and a non-significant difference between MET and PUS samples (R2 = 0.036, P = 0.046). ANCOM-BC analysis revealed that from the top 12 most abundant genera, seven genera were increased in the natural log fold change (LFC) of abundance in MET when compared to CT samples: Bacteroides, Clostridium, Fusobacterium, Phocaeicola, Porphyromonas, Prevotella, and Streptococcus. Two genera, Dietzia and Microbacterium, were decreased in natural LFC of abundance when comparing MET (regardless of treatment) and CT, while no changes in natural LFC of abundance were observed for Escherichia, Histophilus, and Trueperella. CONCLUSIONS: The results presented here, are the current deepest shotgun metagenomic analyses conducted on the bovine uterine microbiome to date (mean of 256,425 genus-level reads per sample). Our findings support that uterine samples from cows without metritis (CT) had increased α-diversity but decreased ß-diversity when compared to metritis or PUS cows, characteristic of dysbiosis. In summary, our findings highlight that MET cows have an increased abundance of Bacteroides, Porphyromonas, and Fusobacterium when compared to CT and PUS, and support the need for further studies to better understand their potential causal role in metritis pathogenesis.
RESUMO
Infective endocarditis (IE) is a potentially fatal disease in dogs. Limited information exists regarding the characterization of bacterial isolates from dogs with IE. The objective of this study was to describe bacterial isolates associated with IE and their antimicrobial susceptibility patterns. A retrospective analysis of dogs with IE and bacterial isolates was performed, and antimicrobial susceptibility was interpreted using current veterinary cut points where available. The susceptibility rate was assessed for association with survival and previous antimicrobial administration. Fifty-one bacterial isolates were identified from 45 dogs, and 33 had antimicrobial susceptibility performed. Staphylococcus spp. (14/51; 27.5%) was the most common organism. Antimicrobials with the lowest susceptibility rate were ampicillin (19/26; 73%), doxycycline (16/22; 73%), and enrofloxacin (22/29; 76%) with 12/33 (36%) of isolates exhibiting multidrug resistance (MDR). Individual antimicrobial resistances and the MDR rate were not associated with a difference in survival rate. Bacterial isolates from dogs that had received fluoroquinolone antimicrobials in the month before diagnosis had a higher rate of non-intrinsic fluoroquinolones resistance (5/8;62.5%) compared to those that did not receive fluoroquinolones (2/21; 9.5%) (p = 0.03). Antimicrobial resistance and MDR phenotype were common in this study. Culture and antimicrobial susceptibility testing should be pursued in dogs with IE to help guide antimicrobial therapy.
RESUMO
Appropriate sample collection, storage conditions, and time for transport to the laboratory are important for an accurate diagnostic result. We evaluated the effects of transport storage medium type, time of storage, and storage temperatures on Mannheimia haemolytica (MH) and Pasteurella multocida (PM) recovery using an in vitro model simulation. A quantitative culture method, using colony-forming units per milliliter, was used to recover MH or PM by an in vitro model with cotton swabs. Three independent trials were conducted, in which cotton swabs were inoculated with MH or PM and placed in either (1) a sterile 15-mL polypropylene tube without transport medium (dry), (2) Amies culture medium with charcoal (ACM), or (3) Cary-Blair transport agar (CBA). Swabs were evaluated for recovery of MH or PM when stored at 3 temperatures (4°C, 23°C, or 36°C) and after storage for 8 h, 24 h, or 48 h. From all study group combinations, a total of 162 individual independent swabs were evaluated. The nonparametric Dunn all-pairs approach was used to compare the proportion of culturable bacteria, between the various storage media, temperature, and time point combinations. The proportion of MH in samples stored at 4°C was significantly higher for ACM and CBA than dry storage at 24 and 48 h. The MH samples stored at 36°C had a significantly higher proportion for ACM and CBA than dry storage at 24 h. The proportion of PM in samples stored at 4°C was significantly lower for ACM compared with dry at 8 h but significantly higher at 48 h. The PM samples stored at 23°C in ACM had a significantly higher proportion than dry samples at 24 h, and, at 48 h, ACM and CBA had a significantly higher proportion than the dry group. All swabs stored at 36°C for 48 h had a proportion close to zero, indicating decreasing diagnostic efficacy. These results support the use of transport media such as ACM and CBA for increasing the detection of PM and MH from samples, especially when samples are exposed to high temperatures. The combination of longer periods from collection of samples to diagnostic evaluation (>24 h) and higher storage temperatures (>23°C) were shown to significantly impair diagnostic accuracy.
RESUMO
The objectives of this study were to investigate the effects of group housing (three calves per group) on bovine respiratory disease (BRD), diarrhea and antimicrobial resistance (AMR) to fecal commensal Escherichia coli (EC) and enterococci/streptococci (ES). Our study comprised two arms, one experimental and one observational. In the experimental arm, preweaned calves on a California dairy were randomized to either individual (IND; n = 21) or group (GRP; n = 21) housing, using a modified California-style wooden hutch. The study period lasted from birth to 56 days of age, during which calves were health scored daily. Cumulative incidence and hazard ratios were estimated for disease. Antimicrobial resistance outcomes were assessed using a prospective cohort design; feces were collected from each calf three times per week and EC and ES were evaluated for AMR using the broth microdilution method against a panel of 19 antimicrobial drugs (AMD). Analysis of treatment records was used to select calves that had been exposed (EXP) to an AMD-treated calf. In GRP, exposure occurred when a calf was a hutchmate with an AMD-treated calf. In IND, exposure occurred when a calf was a neighbor with an AMD-treated calf (TRT). Age-matched unexposed calves (UNEXP) were then selected for comparison. Proportions of AMR in fecal commensals among EXP, UNEXP, and TRT calves were compared between GRP and IND. Accelerated failure time survival regression models were specified to compare differences in minimum inhibitory concentration (MIC) of fecal commensals between EXP and UNEXP calves within each of GRP and IND calves separately. Group calves had a BRD hazard 1.94 times greater that of IND calves (p = 0.03), using BRD treatment records as the outcome. For AMR in EC isolates, higher resistance to enrofloxacin was detected in enrofloxacin-EXP GRP isolates compared with enrofloxacin-EXP IND isolates, and UNEXP GRP calves had lower resistance to ceftiofur compared with enrofloxacin-EXP and enrofloxacin-TRT calves. A significant housing-by-time interaction was detected for EC ceftiofur MIC in EXP GRP calves at 4-14 days post exposure to enrofloxacin (MIC EXP-UNEXP: µg/mL (95% CI): 10.62 (1.17, 20.07)), compared with UNEXP calves. The findings of this study show an increase in BRD hazard for group-housed calves and an increase in ceftiofur resistance in group-housed calves exposed to an enrofloxacin-treated calf.
RESUMO
The rising prevalence of extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales is a significant threat to animal and human health. This study aims to describe the clinical features, antimicrobial susceptibility patterns, and genotypic features of infections associated with ESBL-producing Enterobacterales in dogs and cats seen at a tertiary referral veterinary teaching hospital. Enterobacterales isolated from dogs and cats that underwent ESBL testing during the study period were identified using a search of the hospital antimicrobial susceptibility test software database. Medical records of confirmed ESBL isolates were reviewed, and the source of infection, clinical findings, and antimicrobial susceptibility were recorded. Genomic DNA from bacterial isolates was evaluated for antimicrobial resistance genes with whole genome sequencing. Thirty ESBL-producing isolates were identified based on phenotypic testing (twenty-nine from dogs, one from a cat); twenty-six were Escherichia coli and the remainder were Klebsiella spp. Bacterial cystitis was the most commonly identified (8/30, 27%) clinical problem associated with infection. Resistance to three or more antimicrobial classes was identified in 90% (27/30) of isolates, and all isolates were susceptible to imipenem. Over 70% of isolates were susceptible to piperacillin-tazobactam, amikacin, and cefoxitin. BlaCTX-M-15 was the most common ESBL gene identified, present in 13/22 (59%) isolate genomes. A wide range of clinical infections were identified. Piperacillin-tazobactam and amikacin may be alternatives to carbapenem therapy. Further, larger-scale studies are needed.
RESUMO
Pseudogymnoascus destructans is the etiological agent of white-nose syndrome (WNS), a fungal skin infection of hibernating bats. Pathophysiology of the disease involves disruption of bat metabolism and hibernation patterns, which subsequently causes premature emergence and mortality. However, information on the mechanism(s) and virulence factors of P. destructans infection is minimally known. Typically, fungal adherence to host cells and extracellular matrix (ECM) is the critical first step of the infection. It allows pathogenic fungi to establish colonization and provides an entry for invasion in host tissues. In this study, we characterized P. destructans conidial adherence to laminin and fibronectin. We found that P. destructans conidia adhered to laminin and fibronectin in a dose-dependent, time-dependent and saturable manner. We also observed changes in the gene expression of secreted proteases, in response to ECM exposure. However, the interaction between fungal conidia and ECM was not specific, nor was it facilitated by enzymatic activity of secreted proteases. We therefore further investigated other P. destructans proteins that recognized ECM and found glyceraldehyde-3-phosphate dehydrogenase and elongation factor 1-alpha among the candidate proteins. Our results demonstrate that P. destructans may use conidial surface proteins to recognize laminin and fibronectin and facilitate conidial adhesion to ECM. In addition, other non-specific interactions may contribute to the conidial adherence to ECM. However, the ECM binding protein candidates identified in this study highlight additional potential fungal virulence factors worth investigating in the P. destructans mechanism of infection in future studies.
Assuntos
Quirópteros , Fibronectinas , Animais , Esporos Fúngicos , Peptídeo Hidrolases , Proteínas da Matriz Extracelular , Laminina , Matriz Extracelular , Endopeptidases , Fatores de Virulência , Quirópteros/microbiologiaRESUMO
Erysipelothrix spp., including E. rhusiopathiae, are zoonotic bacterial pathogens that can cause morbidity and mortality in mammals, fish, reptiles, birds, and humans. The southern sea otter (SSO; Enhydra lutris nereis) is a federally-listed threatened species for which infectious disease is a major cause of mortality. We estimated the frequency of detection of these opportunistic pathogens in dead SSOs, described pathology associated with Erysipelothrix infections in SSOs, characterized the genetic diversity and antimicrobial susceptibility of SSO isolates, and evaluated the virulence of two novel Erysipelothrix isolates from SSOs using an in vivo fish model. From 1998 to 2021 Erysipelothrix spp. were isolated from six of >500 necropsied SSOs. Erysipelothrix spp. were isolated in pure culture from three cases, while the other three were mixed cultures. Bacterial septicemia was a primary or contributing cause of death in five of the six cases. Other pathology observed included suppurative lymphadenopathy, fibrinosuppurative arteritis with thrombosis and infarction, bilateral uveitis and endophthalmitis, hypopyon, petechia and ecchymoses, mucosal infarction, and suppurative meningoencephalitis and ventriculitis. Short to long slender Gram-positive or Gram-variable bacterial rods were identified within lesions, alone or with other opportunistic bacteria. All six SSO isolates had the spaA genotype-four isolates clustered with spaA E. rhusiopathiae strains from various terrestrial and marine animal hosts. Two isolates did not cluster with any known Erysipelothrix spp.; whole genome sequencing revealed a novel Erysipelothrix species and a novel E. rhusiopathiae subspecies. We propose the names Erysipelothrix enhydrae sp. nov. and Erysipelothrix rhusiopathiae ohloneorum ssp. nov. respectively. The type strains are E. enhydrae UCD-4322-04 and E. rhusiopathiae ohloneorum UCD-4724-06, respectively. Experimental injection of tiger barbs (Puntigrus tetrazona) resulted in infection and mortality from the two novel Erysipelothrix spp. Antimicrobial susceptibility testing of Erysipelothrix isolates from SSOs shows similar susceptibility profiles to isolates from other terrestrial and aquatic animals. This is the first description of the pathology, microbial characteristics, and genetic diversity of Erysipelothrix isolates recovered from diseased SSOs. Methods presented here can facilitate case recognition, aid characterization of Erysipelothrix isolates, and illustrate assessment of virulence using fish models.
RESUMO
The goals of this study were to evaluate factors affecting recovery and antimicrobial resistance (AMR) in intrauterine E. coli in post-partum dairy cows with and without metritis from commercial California dairy farms. Using a cross-sectional study design, a total of 307 cows were sampled from 25 farms throughout California, from which a total of 162 intrauterine E. coli isolates were recovered. During farm visits, cows within 21 days post-partum were categorized in one of three clinical presentation groups before enrollment: metritis (MET, n = 86), defined as a cow with watery, red or brown colored, and fetid vaginal discharge; cows with purulent discharge (PUS, n = 106), defined as a non-fetid purulent or mucopurulent vaginal discharge; and control cows, (CTL, n = 115) defined as cows with either no vaginal discharge or a clear, non-purulent mucus vaginal discharge. Cows diagnosed as MET had significantly higher odds for recovery of E. coli compared to cows diagnosed as CTL (OR = 2.16, 95% CI: 1.17-3.96), with no significant difference observed between PUS and CTL, and PUS and MET. An increase in days in milk (DIM) at the time of sampling was significantly associated with a decrease in the odds ratio for E. coli recovery from intrauterine swabs (OR = 0.94, 95% CI: 0.89-0.98). All intrauterine E. coli were resistant to ampicillin (AMP), with an AMR prevalence of 30.2% and 33.9% observed for chlortetracycline and oxytetracycline, respectively. Only 8.6% of isolates were resistant to ceftiofur (CEFT), one of the most common drugs used to treat cows on farms sampled. No significant difference in the prevalence of AMR was observed among clinical groups at the individual cow level. At the farm level, a significantly higher odds for isolating intrauterine E. coli resistant to chlortetracycline (OR: 2.6; 95% CI: 3.7-58.0) or oxytetracycline (OR: 1.9; 95% CI: 1.4-33.8) was observed at farms that used an intrauterine infusion of oxytetracycline as a treatment for metritis when compared to those farms that did not use this practice. Findings from this study indicate the need for further research supporting a broader understanding of farm practices driving AMR in cows with metritis, as well as data to increase the accuracy of breakpoints for AMR classification of intrauterine E. coli from cattle.
Assuntos
Doenças dos Bovinos , Clortetraciclina , Endometrite , Infecções por Escherichia coli , Oxitetraciclina , Doença Inflamatória Pélvica , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/epidemiologia , Estudos Transversais , Farmacorresistência Bacteriana , Endometrite/tratamento farmacológico , Endometrite/epidemiologia , Endometrite/veterinária , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fazendas , Feminino , Humanos , Fatores de RiscoRESUMO
Tularemia is a rare zoonotic disease found worldwide. The agent responsible for disease, Francisella tularensis, is one of the most highly infectious pathogens known, one that is capable of causing life-threatening illness with inhalation of <50 organisms. High infectivity explains concerns of its use in bioterrorism. This case describes a 4-year-old male neutered Australian shepherd presented for evaluation of hyporexia and fever. Physical examination revealed marked enlargement of the right superficial cervical lymph node. Tularemia lymphadenitis was diagnosed by lymph node aspiration cytology and culture. Public health officials were advised of the isolation of this zoonotic pathogen, and contact tracing was instituted. Seven individuals associated with the aspiration event were screened for tularemia and treated with prophylactic ciprofloxacin. All were negative, and none became sick. The dog was treated with doxycycline for 3 weeks, and clinical signs and physical examination abnormalities were resolved fully. The owner, a solid organ transplant recipient, was also screened for disease and received prophylactic doxycycline due to a history of shared exposure. The owner remained well throughout the course of his dog's disease and has heightened awareness of potential zoonoses. This case highlights the importance of animals as a sentinel for human health threats and for coordination of human and veterinary care.
Assuntos
Francisella tularensis , Tularemia , Animais , Austrália , Cães , Hospitais de Ensino , Masculino , Tularemia/diagnóstico , Tularemia/tratamento farmacológico , Tularemia/veterinária , ZoonosesRESUMO
Southern sea otters (SSO: Enhydra lutris nereis) are a federally-listed threatened subspecies found almost exclusively in California, USA. Despite their zoonotic potential and lack of host specificity, K. pneumoniae and Klebsiella spp. have largely unknown epizootiology in SSOs. Klebsiella pneumoniae is occasionally isolated at necropsy, but not from live SSOs. Hypermucoviscous (HMV) K. pneumoniae strains are confirmed pathogens of Pacific Basin pinnipeds, but have not been previously isolated from SSOs. We characterized the virulence profiles of K. pneumoniae isolates from necropsied SSOs, evaluated killing of marine mammal K. pneumoniae following in vitro exposure to California sea lion (CSL: Zalophanus californianus) whole blood and serum, and characterized lesion patterns associated with Klebsiella spp. infection in SSOs. Four of 15 SSO K. pneumoniae isolates were HMV and all were recovered from SSOs that stranded during 2005. Many K. pneumoniae infections were associated with moderate to severe pathology as a cause of death or sequela. All HMV infections were assessed as a primary cause of death or as a direct result of the primary cause of death. Klebsiella-infected SSOs exhibited bronchopneumonia, tracheobronchitis and/or pleuritis, enteritis, Profilicollis sp. acanthocephalan peritonitis, septic peritonitis, and septicemia. All SSO HMV isolates were capsular type K2, the serotype most associated with HMV infections in CSLs. Multiplex PCR revealed two distinct virulence gene profiles within HMV isolates and two within non-HMV isolates. In vitro experiments investigating CSL whole blood and serum killing of K. pneumoniae suggest that HMV isolates are more resistant to serum killing than non-HMV isolates.
Assuntos
Caniformia , Infecções por Klebsiella , Animais , Klebsiella/genética , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/veterinária , Klebsiella pneumoniae , América do NorteRESUMO
CASE DESCRIPTION: An 8-year-old sexually intact female eclectus parrot (Eclectus roratus) with a 4-day history of hyporexia and lethargy and a 1-day history of tenesmus was examined. CLINICAL FINDINGS: Severe leukocytosis characterized by severe heterophilia and moderate monocytosis was present. Marked dilation of the proventriculus and ventriculus and ascites were identified by means of radiography, coelomic ultrasonography, and contrast-enhanced CT, with no clinically relevant motility noted on ultrasonography. Results of coelomic fluid analysis were consistent with pyogranulomatous effusion. Endoscopy of the upper gastrointestinal tract following proventricular and ventricular lavage showed a thick caseous plaque occupying 30% of the caudal proventricular mucosa. Abundant yeast organisms were evident during cytologic examination of a proventricular and ventricular wash sample, and fecal culture yielded Candida glabrata. TREATMENT AND OUTCOME: The bird was treated with SC fluids, assisted feedings, nystatin, fluconazole, amoxicillin-clavulanic acid, enrofloxacin, gastroprotectants, maropitant, and analgesics and slowly improved during hospitalization. A marked decrease in proventricular dilation was evident on serial radiographs obtained over a 12-month period. One year after diagnosis, the bird was presented with a 1-week history of hyporexia and lethargy, and fecal culture grew C glabrata. Antifungal treatment was resumed for 3 months. The bird had no clinical signs of infection 16 months after this recurrence, and subsequent fecal cultures were negative for fungal growth. CLINICAL RELEVANCE: Findings illustrate the importance of upper gastrointestinal endoscopy in diagnosing proventricular and ventricular dilation in birds and emphasize the need for long-term antifungal treatment and monitoring in birds with fungal infections.
Assuntos
Doenças das Aves , Papagaios , Gastropatias , Animais , Doenças das Aves/diagnóstico , Doenças das Aves/tratamento farmacológico , Candida glabrata , Feminino , Gastropatias/veterináriaRESUMO
BACKGROUND: Clinical features, treatment, and outcome of opportunistic infections with Rasamsonia spp., a nonpigmented filamentous mold, are not well documented in dogs. OBJECTIVES: Describe clinical, radiographic, pathologic features, and outcome of dogs with disseminated Rasamsonia species complex infections. ANIMALS: Eight client-owned dogs. METHODS: Retrospective case series. Medical records were reviewed to describe signalment, history, clinicopathologic and imaging findings, microbiologic and immunologic results, cyto- and histopathologic diagnoses, treatment, and outcome. RESULTS: Presenting complaints were nonspecific with anorexia (n = 5) and back pain (n = 4) most common. Five dogs were German Shepherd dogs. Six dogs had multifocal discospondylitis and 2 had pleural effusion. Six dogs had Rasamsonia piperina and 2 had Rasamsonia argillacea infections with isolates identified using DNA sequencing. Rasamsonia spp. were isolated by urine culture in 5 of 7 dogs. Five of 6 dogs had positive serum Aspergillus galactomannan antigen enzyme immunoassay (EIA) results. Median survival time was 82 days, and 317 days for dogs that survived to discharge. Four died during initial hospitalization (median survival, 6 days). All isolates had low minimum effective concentrations (MECs) to echinocandins with variable minimum inhibitory concentrations (MICs) for azole antifungal drugs. CONCLUSIONS AND CLINICAL IMPORTANCE: Rasamsonia spp. infections in dogs are associated with multisystemic disease involving the vertebral column, central nervous system, kidneys, spleen, lymph nodes, lungs, and heart. The infection shares clinical features with other systemic mold infections and can be misidentified when using phenotypical microbiologic methods. Molecular techniques are required to identify the organism and guide appropriate antifungal treatment.
Assuntos
Doenças do Cão , Eurotiales , Animais , Antifúngicos/uso terapêutico , Doenças do Cão/tratamento farmacológico , Cães , Estudos RetrospectivosRESUMO
BACKGROUND: Understanding the effects of herd management practices on the prevalence of multidrug-resistant pathogenic Salmonella and commensals Enterococcus spp. and Escherichia coli in dairy cattle is key in reducing antibacterial resistant infections in humans originating from food animals. Our objective was to explore the herd and cow level features associated with the multi-drug resistant, and resistance phenotypes shared between Salmonella, E. coli and Enterococcus spp. using machine learning algorithms. METHODS: Randomly collected fecal samples from cull dairy cows from six dairy farms in central California were tested for multi-drug resistance phenotypes of Salmonella, E. coli and Enterococcus spp. Using data on herd management practices collected from a questionnaire, we built three machine learning algorithms (decision tree classifier, random forest, and gradient boosting decision trees) to predict the cows shedding multidrug-resistant Salmonella and commensal bacteria. RESULTS: The decision tree classifier identified rolling herd average milk production as an important feature for predicting fecal shedding of multi-drug resistance in Salmonella or commensal bacteria. The number of culled animals, monthly culling frequency and percentage, herd size, and proportion of Holstein cows in the herd were found to be influential herd characteristics predicting fecal shedding of multidrug-resistant phenotypes based on random forest models for Salmonella and commensal bacteria. Gradient boosting models showed that higher culling frequency and monthly culling percentages were associated with fecal shedding of multidrug resistant Salmonella or commensal bacteria. In contrast, an overall increase in the number of culled animals on a culling day showed a negative trend with classifying a cow as shedding multidrug-resistant bacteria. Increasing rolling herd average milk production and spring season were positively associated with fecal shedding of multidrug- resistant Salmonella. Only six individual cows were detected sharing tetracycline resistance phenotypes between Salmonella and either of the commensal bacteria. DISCUSSION: Percent culled and culling rate reflect the increase in culling over time adjusting for herd size and were associated with shedding multidrug resistant bacteria. In contrast, number culled was negatively associated with shedding multidrug resistant bacteria which may reflect producer decisions to prioritize the culling of otherwise healthy but low-producing cows based on milk or beef prices (with respect to dairy beef), amongst other factors. Using a data-driven suite of machine learning algorithms we identified generalizable and distant associations between antimicrobial resistance in Salmonella and fecal commensal bacteria, that can help develop a producer-friendly and data-informed risk assessment tool to reduce shedding of multidrug-resistant bacteria in cull dairy cows.
RESUMO
BACKGROUND: This study describes the occurrence of antimicrobial resistance (AMR) in commensal Escherichia coli and Enterococcus/Streptococcus spp. (ES) isolated from fecal samples of dairy cows and assesses the variation of AMR profiles across regions and seasons following the implementation of the Food and Agricultural Code (FAC) Sections 14400-14408 (formerly known as Senate Bill, SB 27) in California (CA). METHODS: The study was conducted on ten dairies distributed across CA's three milk sheds: Northern California (NCA), Northern San Joaquin Valley (NSJV), and the Greater Southern California (GSCA). On each study dairy, individual fecal samples were collected from two cohorts of lactating dairy cows during the fall/winter 2018 and spring/summer 2019 seasons. Each cohort comprised of 12 cows per dairy. The fecal samples were collected at enrollment before calving (close-up stage) and then monthly thereafter for four consecutive time points up to 120 days in milk. A total of 2,171 E. coli and 2,158 ES isolates were tested for antimicrobial susceptibility using the broth microdilution method against a select panel of antimicrobials. RESULTS: The E. coli isolates showed high resistance to florfenicol (83.31% ± 0.80) and sulphadimethoxine (32.45%), while resistance to ampicillin (1.10% ± 0.21), ceftiofur (1.93% ± 0.29), danofloxacin (4.01% ± 0.42), enrofloxacin (3.31% ± 0.38), gentamicin (0.32% ± 0.12) and neomycin (1.61% ± 0.27) had low resistance proportions. The ES isolates were highly resistant to tildipirosin (50.18% ± 1.10), tilmicosin (48% ± 1.10), tiamulin (42%) and florfenicol (46% ± 1.10), but were minimally resistant to ampicillin (0.23%) and penicillin (0.20%). Multidrug resistance (MDR) (resistance to at least 1 drug in ≥3 antimicrobial classes) was observed in 14.14% of E. coli isolates and 39% of ES isolates. Escherichia coli isolates recovered during winter showed higher MDR prevalence compared to summer isolates (20.33% vs. 8.04%). A higher prevalence of MDR was observed in NSJV (17.29%) and GSCA (15.34%) compared with NCA (10.10%). CONCLUSIONS: Our findings showed high rates of AMR to several drugs that are not labeled for use in lactating dairy cattle 20 months of age or older. Conversely, very low resistance was observed for drugs labeled for use in adult dairy cows, such as cephalosporins and penicillin. Overall, our findings identified important differences in AMR by antimicrobial class, region and season.
RESUMO
OBJECTIVE: To determine the ability of 0.2% polyhexamethylene biguanide (PHMB)-impregnated gauze to inhibit the growth of bacteria isolated from equine infected sites. STUDY DESIGN: In vitro study. METHODS: Nine bacterial isolates were obtained from cultures submitted from equine patients presenting with penetrating injuries of the hoof (n = 4), septic osteitis (n = 1), synovial sepsis (n = 1), wounds (n = 2), and incisional infection following laparotomy (n = 1). Two standardized strains were also included. A standard inoculum of each isolate was placed on 12 Muller-Hinton agar plates. Squares (2.5 cm × 2.5 cm) of 0.2% PHMB-impregnated (n = 6) and nonimpregnated control gauze (n = 6) were placed on inoculated agar plates. Bacterial growth under each gauze square was assessed after a 24-h incubation period and areas of inhibition were measured to a standardized scale, using image-processing software. Mean ± SD growth inhibition (%) using 0.2% PHMB-impregnated gauze was compared to the nonimpregnated gauze for each isolate using Student's t test (p < .05). RESULTS: The 0.2% PMHB-impregnated gauze inhibited the growth of Staphylococcus spp. (n = 4) by 33%-83.1% and that of Escherichia coli spp. (n = 4) by 6.5%-37%. There was no inhibition of growth of Pseudomonas aeruginosa or either Enterococcus spp. CONCLUSION: The 0.2% PHMB-impregnated dressing tested here inhibited the growth of staphylococcal and E. coli isolates, but the magnitude of inhibition varied between strains. CLINICAL RELEVANCE: These results justify in vivo studies to evaluate the ability of the dressing to reduce the bacterial growth of common equine bacterial pathogens in clinical practice.
Assuntos
Bandagens/estatística & dados numéricos , Biguanidas/farmacologia , Desinfetantes/farmacologia , Infecções por Escherichia coli/veterinária , Doenças dos Cavalos/prevenção & controle , Infecções Estafilocócicas/veterinária , Infecção da Ferida Cirúrgica/veterinária , Animais , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Doenças dos Cavalos/microbiologia , Cavalos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus/efeitos dos fármacos , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/prevenção & controleRESUMO
Interactions with livestock in public settings such as county and state fairs can expose people and other livestock to faecal material capable of spreading zoonotic enteric pathogens. The goal of this study was to understand these risks by screening livestock faeces (n = 245) and livestock bedding (n = 155) for common zoonotic pathogens (Giardia, Cryptosporidium, Salmonella and Campylobacter spp.) and by measuring faecal indicator, Escherichia coli, concentrations in drinking water (n = 153), feed containers (n = 124) and bedding material (n = 157) in four livestock species (cattle, sheep, goats and swine) from county fairs in California, USA. Results indicated that sheep were most likely to have pathogens detected in faeces and that Giardia was the most frequently detected pathogen in both faeces (11%) and bedding (21%) across all livestock species. Additionally, increasing the number of animals in a holding pen at fairs, increasing the stocking density of animals in transport trailers to fairs, and having access to water in transport trailers significantly increased the odds of detecting pathogens in livestock faeces of any animal species. Observing solid material in water, stale feed and soiled bedding was associated with detecting higher E. coli concentrations. These findings provide evidence of faecal pathogens present at county fairs and suggest that site observations can aid in assessing levels of faecal exposure. The findings also indicate that the use of biosecurity measures such as (a) routine changing of livestock drinking water, feed and bedding, (b) not overstocking animals in holding pens and trailers and (c) keeping species in separate holding areas may reduce the risk of humans and livestock being exposed to faecal pathogens.