Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101764

RESUMO

Intestinal microbiota and selected strains of commensal bacteria influence regulatory T (Treg) cell functionality in the colon. Nevertheless, whether and how microbiota changes the transcriptome profile and TCR specificities of colonic Tregs remain to be precisely defined. In this study, we have employed single-cell RNA sequencing and comparatively analyzed colonic Tregs from specific pathogen-free and germ-free (GF) mice. We found that microbiota shifts the activation trajectory of colonic Tregs toward a distinct phenotypic subset enriched in specific pathogen-free but not in GF mice. Moreover, microbiota induced the expansion of specific Treg clonotypes with shared transcriptional specificities. The microbiota-induced subset of colonic Tregs, identified as PD-1- CXCR3+ Tregs, displayed enhanced suppressive capabilities compared with colonic Tregs derived from GF mice, enhanced production of IL-10, and were the primary regulators of enteric inflammation in dextran sodium sulfate-induced colitis. These findings identify a hitherto unknown gut microbiota and immune cell interaction module that could contribute to the development of a therapeutic modality for intestinal inflammatory diseases.

2.
Nutrients ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542701

RESUMO

The composition and diversity of gut microbiota significantly influence the immune system and are linked to various diseases, including inflammatory and allergy disorders. While considerable research has focused on exploring single bacterial species or consortia, the optimal strategies for microbiota-based therapeutics remain underexplored. Specifically, the comparative effectiveness of bacterial consortia versus individual species warrants further investigation. In our study, we assessed the impact of the bacterial consortium MPRO, comprising Lactiplantibacillus plantarum HY7712, Bifidobacterium animalis ssp. lactis HY8002, and Lacticaseibacillus casei HY2782, in comparison to its individual components. The administration of MPRO demonstrated enhanced therapeutic efficacy in experimental models of atopic dermatitis and inflammatory colitis when compared to single strains. MPRO exhibited the ability to dampen inflammatory responses and alter the gut microbial landscape significantly. Notably, MPRO administration led to an increase in intestinal CD103+CD11b+ dendritic cells, promoting the induction of regulatory T cells and the robust suppression of inflammation in experimental disease settings. Our findings advocate the preference for bacterial consortia over single strains in the treatment of inflammatory disorders, carrying potential clinical relevance.


Assuntos
Bifidobacterium animalis , Dermatite Atópica , Probióticos , Humanos , Inflamação , Probióticos/uso terapêutico , Probióticos/farmacologia , Bifidobacterium animalis/fisiologia , Bactérias , Anti-Inflamatórios/farmacologia
3.
Adv Healthc Mater ; 11(13): e2102667, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35397156

RESUMO

Multifaceted functions displayed by both pro- and anti-inflammatory properties of chitosan hinder its effective development as an immunomodulatory agent. Herein, the contributions of the bending stiffness of chitosan with regard to its immune regulatory properties toward inflammation are investigated. The anti-inflammatory properties of chitosan molecular weight (MW) with a shorter (≈1 kDa) or longer (≈15 kDa) than the persistent length (LP ) are compared using immunological assays and nanomechanics-based experiments on the surface forces apparatus (SFA). Interestingly, 1 kDa chitosan significantly enhances the generation of anti-inflammatory regulatory T cells (Tregs) through the Dectin-1-dependent pattern recognition receptor (PRR) on antigen-presenting cells. SFA analyses also show a similar trend of interaction forces between chitosan and diverse PRRs depending on their MW. The results obtained in the immunological and nanomechanical experiments are consistent and imply that the binding features of PRRs vary depending on the MW of chitosan, which may alter immune activity. In accordance, in vivo administration of only 1 kDa represses inflammatory responses and suppresses the progression of experimental colitis. This study elucidates a previously unexplored bending stiffness-dependent immune regulatory property of chitosan and suggests the applicability of low MW (rod-like) chitosan as a pharmaceutical ingredient to treat diverse inflammatory disorders.


Assuntos
Quitosana , Células Apresentadoras de Antígenos , Quitosana/química , Imunidade , Peso Molecular , Receptores de Reconhecimento de Padrão
4.
Nat Commun ; 12(1): 3611, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127673

RESUMO

Yeast is an integral part of mammalian microbiome, and like commensal bacteria, has the potential of being harnessed to influence immunity in clinical settings. However, functional specificities of yeast-derived immunoregulatory molecules remain elusive. Here we find that while under steady state, ß-1,3-glucan-containing polysaccharides potentiate pro-inflammatory properties, a relatively less abundant class of cell surface polysaccharides, dubbed mannan/ß-1,6-glucan-containing polysaccharides (MGCP), is capable of exerting potent anti-inflammatory effects to the immune system. MGCP, in contrast to previously identified microbial cell surface polysaccharides, through a Dectin1-Cox2 signaling axis in dendritic cells, facilitates regulatory T (Treg) cell induction from naïve T cells. Furthermore, through a TLR2-dependent mechanism, it restrains Th1 differentiation of effector T cells by suppressing IFN-γ expression. As a result, administration of MGCP display robust suppressive capacity towards experimental inflammatory disease models of colitis and experimental autoimmune encephalomyelitis (EAE) in mice, thereby highlighting its potential therapeutic utility against clinically relevant autoimmune diseases.


Assuntos
Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Polissacarídeos/imunologia , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/imunologia , Animais , Linfócitos T CD4-Positivos , Diferenciação Celular/efeitos dos fármacos , Colite/imunologia , Colite/patologia , Ciclo-Oxigenase 2 , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental , Glucanos , Proteínas de Homeodomínio/genética , Imunidade , Lectinas Tipo C , Mananas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Saccharomyces cerevisiae/genética , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th1 , Zimosan , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia
5.
Nat Commun ; 9(1): 4736, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413714

RESUMO

TH17 cells originating from regulatory T (Treg) cells upon loss of the Treg-specific transcription factor Foxp3 accumulate in sites of inflammation and aggravate autoimmune diseases. Whether an active mechanism drives the generation of these pathogenic 'ex-Foxp3 TH17' cells, remains unclear. Here we show that pro-inflammatory cytokines enhance the expression of transcription regulator Id2, which mediates cellular plasticity of Treg into ex-Foxp3 TH17 cells. Expression of Id2 in in vitro differentiated iTreg cells reduces the expression of Foxp3 by sequestration of the transcription activator E2A, leading to the induction of TH17-related cytokines. Treg-specific ectopic expression of Id2 in mice significantly reduces the Treg compartment and causes immune dysregulation. Cellular fate-mapping experiments reveal enhanced Treg plasticity compared to wild-type, resulting in exacerbated experimental autoimmune encephalomyelitis pathogenesis or enhanced anti-tumor immunity. Our findings suggest that controlling Id2 expression may provide a novel approach for effective Treg cell immunotherapies for both autoimmunity and cancer.


Assuntos
Plasticidade Celular , Inflamação/imunologia , Proteína 2 Inibidora de Diferenciação/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunidade , Inflamação/patologia , Fatores Reguladores de Interferon/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Células Th17/citologia
6.
Sci Immunol ; 3(28)2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341145

RESUMO

Dysregulation of intestinal microflora is linked to inflammatory disorders associated with compromised immunosuppressive functions of Foxp3+ T regulatory (Treg) cells. Although mucosa-associated commensal microbiota has been implicated in Treg generation, molecular identities of the "effector" components controlling this process remain largely unknown. Here, we have defined Bifidobacterium bifidum as a potent inducer of Foxp3+ Treg cells with diverse T cell receptor specificity to dietary antigens, commensal bacteria, and B. bifidum itself. Cell surface ß-glucan/galactan (CSGG) polysaccharides of B. bifidum were identified as key components responsible for Treg induction. CSGG efficiently recapitulated the activity of whole bacteria and acted via regulatory dendritic cells through a partially Toll-like receptor 2-mediated mechanism. Treg cells induced by B. bifidum or purified CSGG display stable and robust suppressive capacity toward experimental colitis. By identifying CSGG as a functional component of Treg-inducing bacteria, our studies highlight the immunomodulatory potential of CSGG and CSGG-producing microbes.


Assuntos
Bifidobacterium bifidum/imunologia , Fatores de Transcrição Forkhead/imunologia , Polissacarídeos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Bifidobacterium bifidum/citologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...