Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(19): 23833-23848, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33175352

RESUMO

One of the main challenges of electrochemical Fenton-based processes is the treatment of organic pollutants at near-neutral pH. As a potential approach to this problem, this work addresses the use of a low content of soluble chelated metal catalyst, formed between Fe(III) and ethylenediamine-N,N'-disuccinic (EDDS) acid (1:1), to degrade the herbicide triclopyr in 0.050 M Na2SO4 solutions at pH 7.0 by photoelectro-Fenton with UVA light or sunlight (PEF and SPEF, respectively). Comparison with electro-Fenton treatments revealed the crucial role of the photo-Fenton-like reaction, since this promoted the production of soluble Fe(II) that enhanced the pesticide removal. Hydroxyl radicals formed at the anode surface and in the bulk were the main oxidants. A boron-doped diamond (BDD) anode yielded a greater mineralization than an IrO2-based one, at the expense of reduced cost-effectiveness. The effect of catalyst concentration and current density on the performance of PEF with BDD was examined. The PEF trials in 0.25 mM Na2SO4 + 0.35 mM NaCl medium showed a large influence of generated active chlorine as oxidant, being IrO2 more suitable than RuO2 and BDD. In SPEF with BDD, the higher light intensity from solar photons accelerated the removal of the catalyst and triclopyr, with small effect on mineralization. A plausible route for the herbicide degradation by Fe(III)-EDDS-catalyzed PEF and SPEF is finally proposed based on detected byproducts: three heteroaromatic and four linear N-aliphatic compounds, formamide, and tartronic and oxamic acids.


Assuntos
Praguicidas , Poluentes Químicos da Água , Eletrodos , Compostos Férricos , Glicolatos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Luz Solar , Raios Ultravioleta
2.
Sci Total Environ ; 747: 141541, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32795810

RESUMO

The development of new or upgraded electrochemical water treatment technologies is considered a topic of great interest. Here, Tartrazine azo dye solutions were treated by means of a quite innovative dual electrochemical persulfate (S2O82-, PS) activation that combines H2O2 generation at an air-diffusion cathode and anodic oxidation (AO) at a boron-doped diamond (BDD) anode using a stirred tank reactor. This so-called AO-H2O2/PS process was compared to AO with stainless steel cathode, both in 50 mM Na2SO4 medium, finding the oxidation power increasing as: AO < AO-H2O2 < AO/PS < AO-H2O2/PS. In the latter, the dye and its products were mainly destroyed by: (i) hydroxyl radicals, formed either from water oxidation at BDD surface or via reaction between H2O2 and S2O82-, and (ii) sulfate radical anion, formed from the latter reaction, thermal PS activation and cathodic S2O82- reduction. Hydroxyl radicals prevailed as oxidizing agents, as deduced from trials with tert-butanol and methanol. The reaction between S2O82- and accumulated H2O2 was favored as temperature increased from 25 to 45 °C. The effect of PS content up to 36 mM, dye concentration within the range 0.22-0.88 mM, current density (j) between 8.3 and 33.3 mA cm-2 and pH between 3.0 and 9.0 on the process performance was examined. All decolorization profiles agreed with a pseudo-first-order kinetics. The best results for treating 0.44 mM dye were attained with 36 mM PS at pH 3.0, j = 16.7 mA cm-2 and 45 °C, yielding total loss of color, 62% TOC removal and 50% mineralization current efficiency after 360 min. The slow mineralization was attributed to the persistence of recalcitrant byproducts like maleic, acetic, oxalic, formic and oxamic acids. It is concluded that the novel AO-H2O2/PS process is more effective than AO/PS to treat Tartrazine solutions, being advisable to extend the study to other organic pollutants.

3.
Water Res ; 128: 71-81, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091806

RESUMO

The electrochemical degradation of tetracaine hydrochloride has been studied in urban wastewater. Treatments in simulated matrix with similar ionic composition as well as in 0.050 M Na2SO4 were comparatively performed. The cell contained an air-diffusion cathode for H2O2 electrogeneration and an anode selected among active Pt, IrO2-based and RuO2-based materials and non-active boron-doped diamond (BDD). Electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF) were comparatively assessed at pH 3.0 and constant current density. The pharmaceutical and its byproducts were oxidized by OH formed from water oxidation at the anode surface and in the bulk from Fenton's reaction, which occurred upon addition of 0.50 mM Fe2+ in all media, along with active chlorine originated from the anodic oxidation of Cl- contained in the simulated matrix and urban wastewater. The PEF process was the most powerful treatment regardless of the electrolyte composition, owing to the additional photolysis of intermediates by UVA radiation. The use of BDD led to greater mineralization compared to other anodes, being feasible the total removal of all organics from urban wastewater by PEF at long electrolysis time. Chlorinated products were largely recalcitrant when Pt, IrO2-based or RuO2-based anodes were used, whereas they were effectively destroyed by BDD(OH). Tetracaine decay always obeyed a pseudo-first-order kinetics, being slightly faster with the RuO2-based anode in Cl- media because of the higher amounts of active chlorine produced. Total nitrogen and concentrations of NH4+, NO3-, ClO3-, ClO4- and active chlorine were determined to clarify the behavior of the different electrodes in PEF. Eight intermediates were identified by GC-MS and fumaric and oxalic acids were quantified as final carboxylic acids by ion-exclusion HPLC, allowing the proposal of a plausible reaction sequence for tetracaine mineralization by PEF in Cl--containing medium.


Assuntos
Tetracaína/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Boro/química , Cloro/análise , Técnicas Eletroquímicas , Peróxido de Hidrogênio/química , Ferro/química , Cinética , Nitrogênio/análise , Oxirredução , Fotólise , Tetracaína/química , Raios Ultravioleta , Poluentes Químicos da Água/química
4.
Water Res ; 46(7): 2067-76, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22348999

RESUMO

The mineralization of flumequine, an antimicrobial agent belonging to the first generation of synthetic fluoroquinolones which is detected in natural waters, has been studied by electrochemical advanced oxidation processes (EAOPs) like electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The experiments were performed in a cell containing a boron-doped diamond (BDD) anode and an air-diffusion cathode to generate H(2)O(2) at constant current. The Fe(2+) ion added to the medium increased the solubility of the drug by the formation of a complex of intense orange colour and also reacted with electrogenerated H(2)O(2) to form hydroxyl radical from Fenton reaction. Oxidant hydroxyl radicals at the BDD surface were produced from water oxidation. A partial mineralization of flumequine in a solution near to saturation with optimum 2.0mM Fe(2+) at pH 3.0 was achieved by EF. The PEF process was more powerful, giving an almost total mineralization with 94-96% total organic carbon removal. Increasing current accelerated both treatments, but with decreasing mineralization current efficiency. Comparative treatments using a real wastewater matrix led to similar degradation degrees. The kinetics for flumequine decay always followed a pseudo-first-order reaction and its rate constant, similar for both EAOPs, raised with increasing current. Generated carboxylic acids like malonic, formic, oxalic and oxamic acids were quantified by ion-exclusion HPLC. Fe(III)-oxalate and Fe(III)-oxamate complexes were the most persistent by-products under EF conditions and their quicker photolysis by UVA light explains the higher oxidation power of PEF. The release of inorganic ions such as F(-), NO(3)(-) and in lesser extent NH(4)(+) was followed by ionic chromatography.


Assuntos
Técnicas Eletroquímicas/métodos , Fluoroquinolonas/química , Peróxido de Hidrogênio/química , Ferro/química , Processos Fotoquímicos , Raios Ultravioleta , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cromatografia por Troca Iônica , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...