Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Autism Dev Disord ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833030

RESUMO

BACKGROUND: There is a substantial history studying the relationship between general intelligence and the core symptoms of autism. However, a gap in knowledge is how dimensional autism symptomatology associates with different components of clinically-relevant hierarchical models of intelligence. METHOD: We examined correlations between autism diagnostic symptom magnitude (Autism Diagnostic Observational Schedule; ADOS) and a hierarchical statistical model of intelligence. One autistic cohort was tested on the fourth edition of Wechsler Intelligence Scale for Children (WISC-IV; N = 131), and another on the fifth edition (WISC-V; N = 83). We anticipated a convergent pattern of results between cohorts. RESULTS: On WISC-IV, ADOS scores were correlated significantly with g and three out of four intermediate factor scores, which was a broader pattern of correlations than anticipated from the literature. In the WISC-V cohort, only one intermediate factor correlated significantly with the ADOS; correlations with g and the other intermediate factors were less statistically certain. ADOS-factor correlations were larger in the WISC-IV than WISC-V cohort; this difference was significant at the 90% level. CONCLUSIONS: WISC-IV shows dimensional relationships with ADOS at multiple points in the hierarchical model of intelligence. Moreover, the current results provide evidence that relationship between core autism symptomatology and the construct of general intelligence may depend on how intelligence is measured. Known cohort effects in the relationship between categorical autism diagnosis and general intelligence have previously been attributed to changes in autism diagnostic practices. To our knowledge, this is the first evidence that differing versions of IQ tests may be implicated.

2.
Endoscopy ; 56(3): 165-171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37699524

RESUMO

BACKGROUND: Previous studies demonstrated limited accuracy of existing guidelines for predicting choledocholithiasis, leading to overutilization of endoscopic retrograde cholangiopancreatography (ERCP). More accurate stratification may improve patient selection for ERCP and allow use of lower-risk modalities. METHODS: A machine learning model was developed using patient information from two published cohort studies that evaluated performance of guidelines in predicting choledocholithiasis. Prediction models were developed using the gradient boosting model (GBM) machine learning method. GBM performance was evaluated using 10-fold cross-validation and area under the receiver operating characteristic curve (AUC). Important predictors of choledocholithiasis were identified based on relative importance in the GBM. RESULTS: 1378 patients (mean age 43.3 years; 61.2% female) were included in the GBM and 59.4% had choledocholithiasis. Eight variables were identified as predictors of choledocholithiasis. The GBM had accuracy of 71.5% (SD 2.5%) (AUC 0.79 [SD 0.06]) and performed better than the 2019 American Society for Gastrointestinal Endoscopy (ASGE) guidelines (accuracy 62.4% [SD 2.6%]; AUC 0.63 [SD 0.03]) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines (accuracy 62.8% [SD 2.6%]; AUC 0.67 [SD 0.02]). The GBM correctly categorized 22% of patients directed to unnecessary ERCP by ASGE guidelines, and appropriately recommended as the next management step 48% of ERCPs incorrectly rejected by ESGE guidelines. CONCLUSIONS: A machine learning-based tool was created, providing real-time, personalized, objective probability of choledocholithiasis and ERCP recommendations. This more accurately directed ERCP use than existing ASGE and ESGE guidelines, and has the potential to reduce morbidity associated with ERCP or missed choledocholithiasis.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Coledocolitíase , Humanos , Feminino , Estados Unidos , Adulto , Masculino , Coledocolitíase/diagnóstico por imagem , Coledocolitíase/cirurgia , Sensibilidade e Especificidade , Endoscopia Gastrointestinal , Tomada de Decisões , Estudos Retrospectivos
3.
Physiol Behav ; 271: 114349, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709000

RESUMO

Individuals with anorexia nervosa (AN) exhibit dangerous weight loss due to restricted eating and hyperactivity. Those with AN are predominantly women and most cases have an age of onset during adolescence. Activity-based anorexia (ABA) is a rodent behavioral paradigm that recapitulates many of the features of AN including restricted food intake and hyperactivity, resulting in precipitous weight loss. In addition, there is enhanced sensitivity to the paradigm during adolescence. In ABA, animals are given time-restricted access to food and unlimited access to a running wheel. Under these conditions, most animals increase their running and decrease their food intake resulting in precipitous weight loss until they either die or researchers discontinue the paradigm. Some animals learn to balance their food intake and energy expenditure and are able to stabilize and eventually reverse their weight loss. For these studies, adolescent (postnatal day 33-42), female Sprague Dawley (n = 68) rats were placed under ABA conditions (unlimited access to a running wheel and 1.5 hrs access to food) until they either reached 25% body weight loss or for 7 days. 70.6% of subjects reached 25% body weight loss before 7 days and were designated susceptible to ABA while 29.4% animals were resistant to the paradigm and did not achieve the weight loss criterion. We used discrete time survival analysis to investigate the contribution of food intake and running behavior during distinct time periods both prior to and during ABA to the likelihood of reaching the weight loss criterion and dropping out of ABA. Our analyses revealed risk factors, including total running and dark cycle running, that increased the likelihood of dropping out of the paradigm, as well as protective factors, including age at the start of ABA, the percent of total running exhibited as food anticipatory activity (FAA), and food intake, that reduced the likelihood of dropping out. These measures had predictive value whether taken before or during exposure to ABA conditions. Our findings suggest that certain running and food intake behaviors may be indicative of a phenotype that predisposes animals to susceptibility to ABA. They also provide evidence that running during distinct time periods may reflect functioning of distinct neural circuitry and differentially influence susceptibility and resistance to the paradigm.


Assuntos
Anorexia Nervosa , Anorexia , Adolescente , Ratos , Feminino , Humanos , Animais , Masculino , Ratos Sprague-Dawley , Atividade Motora , Modelos Animais de Doenças , Redução de Peso , Ingestão de Alimentos
4.
Assessment ; : 10731911231198205, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694841

RESUMO

Anecdotal evidence has suggested that rater-based measures (e.g., parent report) may have strong across-trait/within-individual covariance that detracts from trait-specific measurement precision; rater measurement-related bias may help explain poor correlation within Autism Spectrum Disorder (ASD) samples between rater-based and performance-based measures of the same trait. We used a multi-trait, multi-method approach to examine method-associated bias within an ASD sample (n = 83). We examined performance/rater-instrument pairs for attention, inhibition, working memory, motor coordination, and core ASD features. Rater-based scores showed an overall greater methodology bias (57% of variance in score explained by method), while performance-based scores showed a weaker methodology bias (22%). The degree of inter-individual variance explained by method alone substantiates an anecdotal concern associated with the use of rater measures in ASD.

5.
J Comput Graph Stat ; 32(2): 413-433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377728

RESUMO

Independent component analysis is commonly applied to functional magnetic resonance imaging (fMRI) data to extract independent components (ICs) representing functional brain networks. While ICA produces reliable group-level estimates, single-subject ICA often produces noisy results. Template ICA is a hierarchical ICA model using empirical population priors to produce more reliable subject-level estimates. However, this and other hierarchical ICA models assume unrealistically that subject effects are spatially independent. Here, we propose spatial template ICA (stICA), which incorporates spatial priors into the template ICA framework for greater estimation efficiency. Additionally, the joint posterior distribution can be used to identify brain regions engaged in each network using an excursions set approach. By leveraging spatial dependencies and avoiding massive multiple comparisons, stICA has high power to detect true effects. We derive an efficient expectation-maximization algorithm to obtain maximum likelihood estimates of the model parameters and posterior moments of the latent fields. Based on analysis of simulated data and fMRI data from the Human Connectome Project, we find that stICA produces estimates that are more accurate and reliable than benchmark approaches, and identifies larger and more reliable areas of engagement. The algorithm is computationally tractable, achieving convergence within 12 hours for whole-cortex fMRI analysis.

6.
J Autism Dev Disord ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118644

RESUMO

BACKGROUND: The Wechsler Intelligence Scale for Children (WISC) employs a hierarchical model of general intelligence in which index scores separate out different clinically-relevant aspects of intelligence; the test is designed such that index scores are statistically independent from one another within the normative sample. Whether or not the existing index scores meet the desired psychometric property of being statistically independent within autistic samples is unknown. METHOD: We conducted a factor analysis on WISC fifth edition (WISC-V) (N = 83) and WISC fourth edition (WISC-IV) (N = 131) subtest data in children with autism. We compared the data-driven exploratory factor analysis with the manual-derived index scores, including in a typically developing (TD) WISC-IV cohort (N = 209). RESULTS: The WISC-IV TD cohort showed the expected 1:1 relationship between empirically derived factors and manual-derived index scores. We observed less unique correlations between our data-driven factors and manualized IQ index scores in both ASD samples (WISC-IV and WISC-V). In particular, in both WISC-IV and -V, working memory (WM) influenced index scores in autistic individuals that do not load on WM in the normative sample. CONCLUSIONS: WISC index scores do not show the desired statistical independence within autistic samples, as judged against an empirically-derived exploratory factor analysis. In particular, within the currently used WISC-V version, WM influences multiple index scores.

7.
Front Psychol ; 14: 1060525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910768

RESUMO

We used a large convenience sample (n = 22,223) from the Simons Powering Autism Research (SPARK) dataset to evaluate causal, explanatory theories of core autism symptoms. In particular, the data-items collected supported the testing of theories that posited altered language abilities as cause of social withdrawal, as well as alternative theories that competed with these language theories. Our results using this large dataset converge with the evolution of the field in the decades since these theories were first proposed, namely supporting primary social withdrawal (in some cases of autism) as a cause of altered language development, rather than vice versa. To accomplish the above empiric goals, we used a highly theory-constrained approach, one which differs from current data-driven modeling trends but is coherent with a very recent resurgence in theory-driven psychology. In addition to careful explication and formalization of theoretical accounts, we propose three principles for future work of this type: specification, quantification, and integration. Specification refers to constraining models with pre-existing data, from both outside and within autism research, with more elaborate models and more veridical measures, and with longitudinal data collection. Quantification refers to using continuous measures of both psychological causes and effects, as well as weighted graphs. This approach avoids "universality and uniqueness" tests that hold that a single cognitive difference could be responsible for a heterogeneous and complex behavioral phenotype. Integration of multiple explanatory paths within a single model helps the field examine for multiple contributors to a single behavioral feature or to multiple behavioral features. It also allows integration of explanatory theories across multiple current-day diagnoses and as well as typical development.

8.
Hum Brain Mapp ; 44(8): 3271-3282, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999674

RESUMO

Adolescents who are clinically recovered from concussion continue to show subtle motor impairment on neurophysiological and behavioral measures. However, there is limited information on brain-behavior relationships of persistent motor impairment following clinical recovery from concussion. We examined the relationship between subtle motor performance and functional connectivity of the brain in adolescents with a history of concussion, status post-symptom resolution, and subjective return to baseline. Participants included 27 adolescents who were clinically recovered from concussion and 29 never-concussed, typically developing controls (10-17 years); all participants were examined using the Physical and Neurologic Examination of Subtle Signs (PANESS). Functional connectivity between the default mode network (DMN) or dorsal attention network (DAN) and regions of interest within the motor network was assessed using resting-state functional magnetic resonance imaging (rsfMRI). Compared to controls, adolescents clinically recovered from concussion showed greater subtle motor deficits as evaluated by the PANESS and increased connectivity between the DMN and left lateral premotor cortex. DMN to left lateral premotor cortex connectivity was significantly correlated with the total PANESS score, with more atypical connectivity associated with more motor abnormalities. This suggests that altered functional connectivity of the brain may underlie subtle motor deficits in adolescents who have clinically recovered from concussion. More investigation is required to understand the persistence and longer-term clinical relevance of altered functional connectivity and associated subtle motor deficits to inform whether functional connectivity may serve as an important biomarker related to longer-term outcomes after clinical recovery from concussion.


Assuntos
Concussão Encefálica , Imageamento por Ressonância Magnética , Humanos , Adolescente , Imageamento por Ressonância Magnética/métodos , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
9.
Front Artif Intell ; 6: 1116870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925616

RESUMO

The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.

10.
Front Artif Intell ; 6: 1157762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890982

RESUMO

[This corrects the article DOI: 10.3389/frai.2022.970246.].

11.
Biometrics ; 79(3): 2333-2345, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36263865

RESUMO

Brain segmentation at different levels is generally represented as hierarchical trees. Brain regional atrophy at specific levels was found to be marginally associated with Alzheimer's disease outcomes. In this study, we propose an ℓ1 -type regularization for predictors that follow a hierarchical tree structure. Considering a tree as a directed acyclic graph, we interpret the model parameters from a path analysis perspective. Under this concept, the proposed penalty regulates the total effect of each predictor on the outcome. With regularity conditions, it is shown that under the proposed regularization, the estimator of the model coefficient is consistent in ℓ2 -norm and the model selection is also consistent. When applied to a brain sMRI dataset acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the proposed approach identifies brain regions where atrophy in these regions demonstrates the declination in memory. With regularization on the total effects, the findings suggest that the impact of atrophy on memory deficits is localized from small brain regions, but at various levels of brain segmentation. Data used in preparation of this paper were obtained from the ADNI database.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neuroimagem/métodos , Análise de Regressão , Atrofia/patologia
12.
Biostatistics ; 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36451549

RESUMO

In this study, a longitudinal regression model for covariance matrix outcomes is introduced. The proposal considers a multilevel generalized linear model for regressing covariance matrices on (time-varying) predictors. This model simultaneously identifies covariate-associated components from covariance matrices, estimates regression coefficients, and captures the within-subject variation in the covariance matrices. Optimal estimators are proposed for both low-dimensional and high-dimensional cases by maximizing the (approximated) hierarchical-likelihood function. These estimators are proved to be asymptotically consistent, where the proposed covariance matrix estimator is the most efficient under the low-dimensional case and achieves the uniformly minimum quadratic loss among all linear combinations of the identity matrix and the sample covariance matrix under the high-dimensional case. Through extensive simulation studies, the proposed approach achieves good performance in identifying the covariate-related components and estimating the model parameters. Applying to a longitudinal resting-state functional magnetic resonance imaging data set from the Alzheimer's Disease (AD) Neuroimaging Initiative, the proposed approach identifies brain networks that demonstrate the difference between males and females at different disease stages. The findings are in line with existing knowledge of AD and the method improves the statistical power over the analysis of cross-sectional data.

14.
Sci Adv ; 8(33): eabq5031, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35977026

RESUMO

Brain organoids are important models for mimicking some three-dimensional (3D) cytoarchitectural and functional aspects of the brain. Multielectrode arrays (MEAs) that enable recording and stimulation of activity from electrogenic cells offer notable potential for interrogating brain organoids. However, conventional MEAs, initially designed for monolayer cultures, offer limited recording contact area restricted to the bottom of the 3D organoids. Inspired by the shape of electroencephalography caps, we developed miniaturized wafer-integrated MEA caps for organoids. The optically transparent shells are composed of self-folding polymer leaflets with conductive polymer-coated metal electrodes. Tunable folding of the minicaps' polymer leaflets guided by mechanics simulations enables versatile recording from organoids of different sizes, and we validate the feasibility of electrophysiology recording from 400- to 600-µm-sized organoids for up to 4 weeks and in response to glutamate stimulation. Our studies suggest that 3D shell MEAs offer great potential for high signal-to-noise ratio and 3D spatiotemporal brain organoid recording.

15.
J R Stat Soc Ser C Appl Stat ; 71(3): 541-561, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35991528

RESUMO

A compositional tree refers to a tree structure on a set of random variables where each random variable is a node and composition occurs at each non-leaf node of the tree. As a generalization of compositional data, compositional trees handle more complex relationships among random variables and appear in many disciplines, such as brain imaging, genomics and finance. We consider the problem of sparse regression on data that are associated with a compositional tree and propose a transformation-free tree-based regularized regression method for component selection. The regularization penalty is designed based on the tree structure and encourages a sparse tree representation. We prove that our proposed estimator for regression coefficients is both consistent and model selection consistent. In the simulation study, our method shows higher accuracy than competing methods under different scenarios. By analyzing a brain imaging data set from studies of Alzheimer's disease, our method identifies meaningful associations between memory decline and volume of brain regions that are consistent with current understanding.

16.
Biol Psychiatry Glob Open Sci ; 2(1): 8-16, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35528865

RESUMO

Background: Studies of brain functional connectivity (FC) typically involve massive univariate tests, performing statistical analysis on each individual connection. In this study we apply a novel whole-matrix regression approach referred to as Covariate Assisted Principal (CAP) regression to identify resting-state FC brain networks associated with attention-deficit/hyperactivity disorder (ADHD) and response control. Methods: Participants included 8-12 year-old children with ADHD (n=115, 29 girls) and typically developing controls (n=102, 35 girls) who completed a resting-state fMRI scan and a go/no-go task (GNG). We modeled three sets of covariates to identify resting-state networks associated with an ADHD diagnosis, sex, and response inhibition (commission errors) and variability (ex-Gaussian parameter tau). Results: The first network includes FC between striatal-cognitive control (CC) network subregions and thalamic-default mode network (DMN) subregions and is positively related to age. The second consists of FC between CC-visual-somatomotor regions and between CC-DMN subregions and is positively associated with response variability in boys with ADHD. The third consists of FC within the DMN and between DMN-CC-visual regions and differs between boys with and without ADHD. The fourth consists of FC between visual-somatomotor regions and between visual-DMN regions and differs between girls and boys with ADHD and is associated with response inhibition and variability in boys with ADHD. Unique networks were also identified in each of the three models suggesting some specificity to the covariates of interest. Conclusions: These findings demonstrate the utility of our novel covariance regression approach to studying functional brain networks relevant for development, behavior, and psychopathology.

17.
Front Med (Lausanne) ; 9: 849214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547202

RESUMO

Chronic pain has become a global health problem contributing to years lived with disability and reduced quality of life. Advances in the clinical management of chronic pain have been limited due to incomplete understanding of the multiple risk factors and molecular mechanisms that contribute to the development of chronic pain. The Acute to Chronic Pain Signatures (A2CPS) Program aims to characterize the predictive nature of biomarkers (brain imaging, high-throughput molecular screening techniques, or "omics," quantitative sensory testing, patient-reported outcome assessments and functional assessments) to identify individuals who will develop chronic pain following surgical intervention. The A2CPS is a multisite observational study investigating biomarkers and collective biosignatures (a combination of several individual biomarkers) that predict susceptibility or resilience to the development of chronic pain following knee arthroplasty and thoracic surgery. This manuscript provides an overview of data collection methods and procedures designed to standardize data collection across multiple clinical sites and institutions. Pain-related biomarkers are evaluated before surgery and up to 3 months after surgery for use as predictors of patient reported outcomes 6 months after surgery. The dataset from this prospective observational study will be available for researchers internal and external to the A2CPS Consortium to advance understanding of the transition from acute to chronic postsurgical pain.

18.
Brain Lang ; 225: 105068, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979477

RESUMO

Broca's area is frequently implicated in sentence comprehension but its specific role is debated. Most lesion studies have investigated deficits at the chronic stage. We aimed (1) to use acute imaging to predict which left hemisphere stroke patients will recover sentence comprehension; and (2) to better understand the role of Broca's area in sentence comprehension by investigating acute deficits prior to functional reorganization. We assessed comprehension of canonical and noncanonical sentences in 15 patients with left hemisphere stroke at acute and chronic stages. LASSO regression was used to conduct lesion symptom mapping analyses. Patients with more severe word-level comprehension deficits and a greater proportion of damage to supramarginal gyrus and superior longitudinal fasciculus were likely to experience acute deficits prior to functional reorganization. Broca's area was only implicated in chronic deficits. We propose that when temporoparietal regions are damaged, intact Broca's area can support syntactic processing after functional reorganization occurs.


Assuntos
Compreensão , Acidente Vascular Cerebral , Mapeamento Encefálico/métodos , Lobo Frontal/diagnóstico por imagem , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética
19.
Stat Med ; 41(6): 964-980, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014082

RESUMO

In this study, we propose a two-stage procedure for hypothesis testing, where the first stage is conventional hypothesis testing and the second is an equivalence testing procedure using an introduced empirical equivalence bound (EEB). In 2016, the American Statistical Association released a policy statement on P-values to clarify the proper use and interpretation in response to the criticism of reproducibility and replicability in scientific findings. A recent solution to improve reproducibility and transparency in statistical hypothesis testing is to integrate P-values (or confidence intervals) with practical or scientific significance. Similar ideas have been proposed via the equivalence test, where the goal is to infer equality under a presumption (null) of inequality of parameters. However, the definition of scientific significance/equivalence can sometimes be ill-justified and subjective. To circumvent this drawback, we introduce the B-value and the EEB, which are both estimated from the data. Performing a second-stage equivalence test, our procedure offers an opportunity to improve the reproducibility of findings across studies.


Assuntos
Projetos de Pesquisa , Humanos , Reprodutibilidade dos Testes
20.
Radiology ; 301(1): 178-184, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34282966

RESUMO

Background Resting-state functional MRI (rs-fMRI) is a potential alternative to task-based functional MRI (tb-fMRI) for somatomotor network (SMN) identification. Brain networks can also be generated from tb-fMRI by using independent component analysis (ICA). Purpose To investigate whether the SMN can be identified by using ICA from a language task without a motor component, the sentence completion functional MRI (sc-fMRI) task, compared with rs-fMRI. Materials and Methods The sc-fMRI and rs-fMRI scans in patients who underwent presurgical brain mapping between 2012 and 2016 were analyzed, using the same imaging parameters (other than scanning time) on a 3.0-T MRI scanner. ICA was performed on rs-fMRI and sc-fMRI scans with use of a tool to separate data sets into their spatial and temporal components. Two neuroradiologists independently determined the presence of the dorsal SMN (dSMN) and ventral SMN (vSMN) on each study. Groups were compared by using t tests, and logistic regression was performed to identify predictors of the presence of SMNs. Results One hundred patients (mean age, 40.9 years ± 14.8 [standard deviation]; 61 men) were evaluated. The dSMN and vSMN were identified in 86% (86 of 100) and 76% (76 of 100) of rs-fMRI scans and 85% (85 of 100) and 69% (69 of 100) of sc-fMRI scans, respectively. The concordance between rs-fMRI and sc-fMRI for presence of dSMN and vSMN was 75% (75 of 100 patients) and 53% (53 of 100 patients), respectively. In 10 of 14 patients (71%) where rs-fMRI did not show the dSMN, sc-fMRI demonstrated it. This rate was 67% for the vSMN (16 of 24 patients). Conclusion In the majority of patients, independent component analysis of sentence completion task functional MRI scans reliably demonstrated the somatomotor network compared with resting-state functional MRI scans. Identifying target networks with a single sentence completion scan could reduce overall functional MRI scanning times by eliminating the need for separate motor tasks. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Field and Birn in this issue.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Motor/diagnóstico por imagem , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Idioma , Masculino , Reprodutibilidade dos Testes , Descanso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA