Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876913

RESUMO

OBJECTIVES: Ultrasound imaging (USI) is the gold standard in the clinical diagnosis of thyroid diseases. Compared with two-dimensional (2D) USI, three-dimensional (3D) USI could provide more structural information. However, the unstable pressure generated by the hand-hold ultrasound probe scanning can cause tissue deformation, especially in soft tissues such as the thyroid. The deformation is manifested as tissue structure being compressed in 2D USI, which results in structural discontinuity in 3D USI. Furthermore, multiple scans apply pressure in different directions to the tissue, which will cause relative displacement between the 3D images obtained from multiple thyroid scans. METHODS: In this work, we proposed a framework to minimize the influence of the variation of pressure in thyroid 3D USI. To correct pressure artifacts in a single scanning sequence, an adaptive method to smooth the position of the 2D ultrasound (US) image sequence is adopted before performing volumetric reconstruction. To build a whole 3D US image including both sides of the thyroid gland, an iterative closest point (ICP) based registration pipeline is adopted to eliminate the relative displacement caused by different pressure directions. RESULTS: Our proposed method was validated by in vivo experiments, including healthy volunteers and volunteers with thyroid nodules at different grading levels. CONCLUSIONS: The thyroid gland and nodule are rendered intelligently in the whole scanning region to facilitate the observation of 3D USI results by the doctor. This work might make a positive contribution to the clinical diagnosis of diseases of the thyroid or other soft tissues.

2.
Ultrason Imaging ; : 1617346241259049, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38903053

RESUMO

Three-dimensional (3D) ultrasound imaging can be accomplished by reconstructing a sequence of two-dimensional (2D) ultrasound images. However, 2D ultrasound images usually suffer from low resolution in the elevation direction, thereby impacting the accuracy of 3D reconstructed results. The lateral resolution of 2D ultrasound is known to significantly exceed the elevation resolution. By combining scanning sequences acquired from orthogonal directions, the effects of poor elevation resolution can be mitigated through a composite reconstructing process. Moreover, capturing ultrasound images from multiple perspectives necessitates a precise probe positioning method with a wide angle of coverage. Optical tracking is popularly used for probe positioning for its high accuracy and environment-robustness. In this paper, a novel large-angle accurate optical positioning method is used for enhancing resolution in 3D ultrasound imaging through orthogonal-view scanning and composite reconstruction. Experiments on two phantoms proved that our method could significantly improve reconstruction accuracy in the elevation direction of the probe compared with single-angle parallel scanning. The results indicate that our method holds the potential to improve current 3D ultrasound imaging techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...