RESUMO
This study aims to compare rumen microbiome and metabolites between second lactation dairy cows in the 75th percentile (n = 12; 57.2 ± 5.08 kg/d) of production according to genomic predicted transmitting ability for milk (GPTAM) and their counterparts in the 25th percentile (n = 12; 47.2 ± 8.61 kg/d). It was hypothesized that the metagenome and metabolome would differ between production levels. Cows were matched by days in milk (DIM), sire, occurrence of disease, and days open in previous lactation. For an additional comparison, the cows were also divided by phenotype into high (n = 6; 61.3 ± 2.8 kg/d), medium (n = 10; 55 ± 1.2 kg/d), and low (n = 8; 41.9 ± 5.6 kg/d) based on their milk production. Samples were collected 65 ± 14 DIM. Rumen content was collected using an oro-gastric tube and serum samples were collected from the coccygeal vessels. High-resolution liquid chromatography-mass spectrometry (LC-MS) was used for rumen and serum metabolite profiling. Shotgun metagenomics was used for rumen microbiome profiling. Microbiome sample richness and diversity were used to determine alpha and Bray-Curtis dissimilarity index was used to estimate beta diversity. Differences in metabolites were determined using t-tests or ANOVA. Pearson correlations were used to consider associations between serum metabolites and milk production. There was no evidence of a difference in rumen metabolites or microbial communities by GPTAM or phenotype. Cows in the phenotypic low group had greater serum acetate to propionate ratio and acetate proportion compared to the cows in the phenotypic medium group. Likewise, serum propionate proportion was greater in the medium compared to the low phenotypic group. Serum acetate, butyrate, and propionate concentrations had a weak positive correlation with milk production. When investigating associations between rumen environment and milk production, future studies must consider the impact of the ruminal epithelium absorption and post-absorption processes in relation to milk production.
Assuntos
Lactação , Leite , Rúmen , Animais , Bovinos , Rúmen/microbiologia , Rúmen/metabolismo , Feminino , Leite/metabolismo , Leite/microbiologia , Fenótipo , Metaboloma , Microbiota , Genômica/métodos , Metagenoma , Metabolômica/métodos , MultiômicaRESUMO
BACKGROUND: Beef cattle experience several management challenges across their lifecycle. Castration and weaning, two major interventions in the early life of beef cattle, can have a substantial impact on animal performance. Despite the key role of the rumen microbiome on productive traits of beef cattle, the effect of castration timing and weaning strategy on this microbial community has not been formally described. We assessed the effect of four castration time windows (at birth, turnout, pre-weaning and weaning) and two weaning strategies (fence-line and truck transportation) on the rumen microbiome in a randomized controlled study with 32 male calves across 3 collection days (i.e., time points). Ruminal fluid samples were submitted to shotgun metagenomic sequencing and changes in the taxonomic (microbiota) and functional profile (metagenome) of the rumen microbiome were described. RESULTS: Using a comprehensive yet stringent taxonomic classification approach, we identified 10,238 unique taxa classified under 40 bacterial and 7 archaeal phyla across all samples. Castration timing had a limited long-term impact on the rumen microbiota and was not associated with changes in alpha and beta diversity. The interaction of collection day and weaning strategy was associated with changes in the rumen microbiota, which experienced a significant decrease in alpha diversity and shifts in beta diversity within 48 h post-weaning, especially in calves abruptly weaned by truck transportation. Calves weaned using a fence-line weaning strategy had lower relative abundance of Bacteroides, Lachnospira, Fibrobacter and Ruminococcus genera compared to calves weaned by truck transportation. Some genes involved in the hydrogenotrophic methanogenesis pathway (fwdB and fwdF) had higher relative abundance in fence-line-weaned calves post-weaning. The antimicrobial resistance gene tetW consistently represented more than 50% of the resistome across time, weaning and castration groups, without significant changes in relative abundance. CONCLUSIONS: Within the context of this study, castration timing had limited long-term effects on the rumen microbiota, while weaning strategy had short-term effects on the rumen microbiota and methane-associated metagenome, but not on the rumen resistome.
RESUMO
ß-Defensins are cationic antimicrobial peptides (AMPs) that play an important role in the innate immune defense of bovines. They are constitutively expressed in mammary glands and induced differently in response to pathogens. Their expression is influenced by various factors, including hormones, plant-derived compounds, and dietary energy imbalance. The toll-like receptors (TLRs)/nuclear factor-kappa B (NF-κB) pathway plays a crucial role in ß-defensin induction, while alternative pathways such as mitogen-activated protein kinase (MAPK) and epigenetic regulation also make substantial contributions. ß-Defensins exhibit bactericidal activity against a wide range of pathogens, including two major mastitis pathogens, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), primarily through membrane disruption. ß-Defensins have low cytotoxicity to host cells and demonstrate immunomodulatory properties, and pathogens also display minimal resistance to these AMPs. Given the increasing concern in antimicrobial resistance, the potential of ß-defensins as natural antimicrobials has garnered considerable attention. This article provides an overview of the characteristics of bovine ß-defensins, their expression pathways, their mode of action, and factors influencing their expression in the mammary glands of cattle. Additionally, it identifies the current gaps in research within this field and suggests areas that require further investigation. Understanding the regulation and function of ß-defensins offers valuable insights to develop effective strategies for strengthening the immune system of mammary glands, reducing the reliance on synthetic antimicrobials, and explore novel natural antimicrobial alternatives.
RESUMO
Blanket dry cow therapy (DCT) is a major contributor to overall antibiotic usage on dairy farms in the United States. With low prevalence of intramammary infections at dry-off in US herds today, alternative DCT approaches have been the focus of much research. We hypothesized that complete cessation of DCT [i.e., use of internal teat sealants (ITS) only at dry-off] could be a practical alternative to blanket DCT in well-managed herds. The objective of this negatively controlled clinical trial was to determine the effects of DCT on clinical mastitis (CM) and removal from the herd during the dry period and the first 200 d of the subsequent lactation in multiparous dairy cows treated with only ITS at dry-off. As a secondary objective, we conducted exploratory analysis to identify subpopulations in the herd (based on parity, previous CM history, and dry-period length) where DCT would not affect postcalving udder health, to generate hypotheses about potential alternative selective DCT programs. The study was conducted in a commercial dairy herd in South Dakota from June 2020 to January 2021. Dry-off sessions (n = 43) were scheduled such that all cows at a given session were dried off using ITS alone (ITS only, n = 20 sessions, n = 1,108 cows) or an intramammary DCT product containing 500 mg of cloxacillin (Dry-Clox, Boehringer Ingelheim) followed by ITS (ITS+ABX, n = 23 sessions, n = 1,331 cows). Culling and CM events were recorded by farm workers who were blinded to the treatment status of cows. Hazard ratios (HR) for the effects of the treatment group on CM and removal from the herd were estimated using multivariable Cox proportional hazards, adjusting for the clustered treatment allocation strategy. Risk of removal from the herd during the dry period was lower in ITS+ABX than ITS-only cows (1.1 vs. 2.7%; HR = 0.45; 95% CI: 0.25 to 0.81). Risk of removal from the herd during the first 200 d of lactation was similar in ITS+ABX and ITS-only cows (17.3 vs. 18.0%; HR = 0.98; 95% CI: 0.82 to 1.18). Risk of CM during the first 200 d of lactation was lower in ITS+ABX cows (6.9%; HR = 0.56; 95% CI: 0.41 to 0.76) compared with ITS-only cows (13.4%). The beneficial effects of DCT on CM and removal from the herd were consistently observed across strata of parity, previous CM history, and dry-period length, indicating that no subpopulations could be identified to withhold DCT. The findings from this study indicate that the omission of DCT from the dry-off procedure, when udder health is not taken into consideration, in multiparous cows can have a negative effect on cow health and welfare. Findings from previous research suggest that culture- or algorithm-guided selective dry cow therapy are likely to be safer approaches to improving antibiotic stewardship.
Assuntos
Doenças dos Bovinos , Mastite Bovina , Gravidez , Feminino , Bovinos , Animais , Leite , Paridade , Mastite Bovina/epidemiologia , Contagem de Células/veterinária , Antibacterianos/farmacologia , Lactação , Cloxacilina/farmacologia , Glândulas Mamárias Animais , Indústria de Laticínios , Doenças dos Bovinos/tratamento farmacológicoRESUMO
Changes in prepartum behaviors such as total daily rumination (TDR), total daily activity (TDA) and dry matter intake (DMI) have the potential to be used as early indicators for cows at risk for subclinical hypocalcemia (SCH) or hypomagnesemia (HYM) after calving. Our objective was to investigate associations between average daily rate of change in total daily rumination (ΔTDR), total daily activity (ΔTDA) and dry matter intake (ΔDMI) from -3 days prepartum to calving with SCH and HYM at D0 or D3 relative to calving. Prepartum TDR, TDA and DMI were measured in 64 Holstein dairy cows. Blood samples were taken at D0 and D3 post-calving for the measurement of total plasma Ca and Mg concentration. Linear regression models were used to analyze the association between ΔTDR, ΔTDA and ΔDMI and SCH and HYM at D0 and D3 relative to calving. Potential confounding variables were offered to the models and backwards selection was used to determine which covariates to retain. No significant differences in prepartum ΔTDR, ΔTDA or ΔDMI were found between cows with or without SCH and HYM at D0 and D3. Our results suggest that the change in TDR, TDA and DMI in the last 3 days prepartum are not effective predictors for cows that will have SCH or HYM in the first 3 days postpartum.
RESUMO
The primary objective of this observational study was to evaluate the prevalence of contamination from independently collected quarter-level milk samples pooled in a laboratory and subjected to bacterial culture. To address this objective, weekly quarter-level milk samples were collected longitudinally from a cohort of 503 primiparous cows from five organic dairy farms during the first 5 weeks after calving. Individual quarter milk samples were pooled in a laboratory using aseptic technique ("lab-pooled") and subjected to bacterial culture. In the sample set of 2,006 lab-pooled milk samples, 207 (10.3%) were classified as contaminated using a standard definition (i.e., growth of three or more distinct microorganisms). Subsequent culturing of corresponding quarter-level milk samples revealed that many of the contaminated lab-pooled sample results (i.e., 46.7%) were the result of intramammary infections with different pathogens across the quarters, rather than actual contamination within any single quarter (i.e., "true contamination"). The odds of true contamination were lower when the lab-pooled sample exhibited growth of three microorganisms compared to more than 3 microorganisms. Our findings suggest that pooling of quarter samples within a laboratory setting may yield lower rates of contamination compared to those previously reported from samples composited on-farm, but that current cut-offs to define contamination may need to be evaluated for use with lab-pooled samples. Further investigation of use of lab-pooled samples may be warranted to reduce costs while still providing useful scientific insight.
RESUMO
The main objective of this study was to evaluate the effect of peripartal administration of a commercially available nonspecific immune stimulant (mycobacterium cell wall fraction; MCWF [Amplimune, NovaVive Inc., Napanee, ON, Canada]) on the incidence of disease during early lactation and subsequent fertility of dairy cows. A second objective was to characterize the dynamics of circulating white blood cells (WBC) and metabolic markers following treatment administration. Cows in an United States Department of Agriculture (USDA) organic-certified dairy herd were blocked by parity and, based on sequential calving dates, randomly assigned to receive two injections (5 mL s.c.) of either a placebo (saline solution) as a control (CON; n = 71) or MCWF (n = 65) at enrollment (7 d before expected calving) and within 24 h after calving. Blood samples were collected from a subsample of the study population (MCWF = 16; CON = 18) for WBC count at enrollment, at day 2 post enrollment, and at days 1, 3, 7, and 14 after calving. Serum fatty acids, beta-hydroxybutyrate, and Ca concentrations were determined at days 1 and 7 postpartum (MCWF = 21; CON = 21). Main outcome variables included incidence risk of peripartal and early lactation health disorders and pregnancy at first artificial insemination (AI), at 100, and at 150 days in milk (DIM). In addition, the average daily milk yield up to 90 DIM and death and live culling before 305 DIM were compared. Treatment effects were assessed using multivariable logistic regression, time-to-event analyses, and repeated measures analysis of variance (ANOVA). A treatment effect on the incidence risk of some of the health disorders in the study was established. Incidence risk of metritis and clinical mastitis <28 DIM was smaller in MCWF than in CON cows (36.9% vs. 50.7% and 6.3% vs. 19.7%, respectively). On the contrary, the incidence risk of respiratory disease <28 DIM was smaller in CON (0%) than in MCWF (7.7%). Reproductive performance of multiparous cows was affected by MCWF administration: pregnancy at first AI and pregnancy at 100 and 150 DIM were greater in MCWF than in CON (35.6% vs. 19.2%; 51.1% vs. 25.0%; and 64.4% vs. 40.4%, respectively). Overall, median intervals from calving to pregnancy were 90 vs. 121 d in MCWF and CON cows, respectively. No treatment effects on the dynamics of circulating WBC or in postpartum metabolic status were established. No differences for milk yield or for the proportion of cows that survived up to 305 DIM were determined, although cows in MCWF left the herd earlier than cows in CON. In conclusion, incidence risks of metritis and mastitis in early lactation were smaller in cows receiving MCWF, whereas the incidence risk of respiratory disease was smaller in CON. Fertility significantly improved in MCWF compared with CON cows. As this study was performed in an organic-certified dairy, specific health and reproductive management practices may affect the external validity of the current findings.
Assuntos
Doenças dos Bovinos , Mycobacterium , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Parede Celular , Feminino , Fertilidade , Lactação , Leite , Período Pós-Parto , Gravidez , ReproduçãoRESUMO
Monitoring the body condition score (BCS) of dairy cows is a management strategy that can assist dairy producers in decision-making. The BCS and its variations reflect the level of body fat reserves and fat mobilization throughout the different stages of lactation. Cows that mobilize excessive amounts of fat reserves in response to the increased energy requirements of the transition period are more likely to have higher beta-hydroxybutyrate (BHB) concentration in blood, leading to a higher incidence of hyperketonemia postpartum. In this study, our main objective was to evaluate how both BCS (at 21 d prior to the expected calving date, -21 BCS) and change in BCS during the late dry period (-21 d to calving, ∆BCS) are associated with temporal patterns of blood BHB concentrations during the first two weeks of lactation. Our secondary objective was to characterize the relationship between the change in BCS in the late dry period, and milk yield and milk composition in the first milk test postpartum. In this retrospective cohort study, we assessed BCS at 21 (±3) days before the expected calving date and within three days after calving. Blood BHB concentration was measured at days 3 (±1), 7 (±1), and 14 (±1) postpartum. Hyperketonemia (HYK) was defined as blood BHB ≥ 1.2 mmol/L. To evaluate how -21 BCS and ∆BCS during the late dry period were associated with BHB in early lactation, linear mixed-effects regression models with an unstructured covariate matrix were performed. The association between ∆BCS and incidence of postpartum HYK were determined using a multivariable log-binomial model. A linear regression model was used to evaluate the association between ∆BCS and milk yield and milk composition in the first monthly test-day. Covariates used for model adjustment include parity, season, and baseline BCS. We observed that cows with BCS ≥ 4.0 at 21 d before their expected calving date had the highest BHB concentration postpartum, but no evidence that BCS ≥ 4.0 at 21 d was associated with fluctuations of BHB over time. Cows that experienced a large BCS loss (larger than 0.5 units) during the late dry period had a 61% (95% CI: 1.04, 2.50) higher risk of developing HYK in early lactation and had higher BHB concentrations during early lactation compared with cows with no ∆BCS prepartum. These associations were observed independently of the BCS at -21 d prepartum (baseline). In addition, cows that lost more than 0.5 BCS unit in the late dry period produced 3.3 kg less milk (95% CI: -7.06, 0.45) at the first milk test compared to cows that had no ∆BCS during the late dry period. No evidence of an association between -21 BCS and ∆BCS in the late dry period and milk composition was observed in our study. These results suggest that dynamic measures of BCS during the late dry period, such as ∆BCS, are better at evaluating blood BHB patterns in early lactation than BCS measured at a single time point. Cows with larger BCS loss during the late dry period and with greater parity are more likely to have higher concentrations of blood BHB postpartum, with the highest concentrations reported at 7 d post-calving.
RESUMO
The peripartum period of a dairy cow is characterized by several physiological and behavioral changes in response to a rapid increase in nutrient demands, to support the final stages of fetal growth and the production of colostrum and milk. Traditionally, the transition period is defined as the period 3 weeks before and 3 weeks after parturition. However, several researchers have argued that the transition period begins at the time of dry-off (~60-50 days prior to calving) and extends beyond the first month post-calving in high producing dairy cows. Independent of the definition used, adequate adaptation to the physiological demands of this period is paramount for a successful lactation. Nonetheless, not all cows are successful in transitioning from late gestation to early lactation, leading to approximately one third of dairy cows having at least one clinical disease (metabolic and/or infectious) and more than half of the cows having at least one subclinical case of disease within the first 90 days of lactation. Thus, monitoring dairy cows during this period is essential to detect early disease signs, diagnose clinical and subclinical diseases, and initiate targeted health management to avoid health and production impairment. In this review, we discuss different strategies to monitor dairy cows to detected unintended disruptions in performance and management strategies that can be implemented to improve the metabolic health and performance of dairy cows during the transition period.
RESUMO
Our objective was to evaluate the effects of a non-specific immune stimulant (IS) administered around transportation on health scores (HS), average daily gain (ADG), disease treatment and mortality of Jersey and Jersey-cross calves during the rearing period. Newborn calves (4 d ± 1) were randomly allocated to receive either 1 mL of saline (CON; n = 438), 1 mL of IS before transport (BTIS; n = 431), or 1 mL of IS immediately after transport (ATIS; n = 436). Calves were health scored weekly for 3 weeks after transport. The data were analyzed using multivariable linear mixed models and multivariable logistic regression models. Kaplan-Meier survival analysis was performed for time to event analysis. Treatment, birth weight, breed, site of birth, serum total solids, dam parity, season of enrollment, and metaphylaxis were offered to models. Differences in respiratory and fecal HS, and ADG between treatment groups were not statistically significant. A total of 196 (15.0%) calves were treated at least once for any disease and 52 calves were treated multiple times. The proportion of calves treated for respiratory disease and/or diarrhea were 14.4, 14.4, and 16.2% for BTIS, ATIS and CON groups, respectively. Although the differences in the likelihood of treatment for both respiratory disease and/or diarrhea during the first 9 weeks of life was not statistically different between groups, we observed that more calves in the control group received disease treatments around 15 days of age compared with calves that received IS. The likelihood of treatment for respiratory diseases alone during the first 30 days of life was smaller in the calves that received IS before transportation when compared to the control group. Only 18 (1.4%) calves died within the study period. The calf mortality likelihood was not statistically different between study groups; however, fewer calves in the IS groups died when compared to CON. In conclusion, the use of IS around transportation did not influence weekly HS, ADG, and the number of disease treatments during the rearing period, but administering IS before transportation resulted in fewer treatments of respiratory diseases during the first 30 days post-transport and marginally lower mortality rates during the rearing period.
RESUMO
Incidence of subclinical hypocalcemia in early postpartum dairy cows continues to be an animal welfare concern and an economic burden for producers. Feeding prepartum negative dietary cation-anion difference (DCAD) diets produces metabolic acidosis, which supports mobilization of bone calcium and reduces the incidence of hypocalcemia. Achieving a sufficient degree of metabolic acidosis without reducing dry matter intake (DMI) can be difficult. This study compared the ability of MegAnion (MA; Origination O2D Inc., Maplewood, MN), a new DCAD supplement designed to be more palatable than typical anionic salt sources, and another palatable commercial DCAD product, SoyChlor (SC; Landus Cooperative, Ralston, IA), to reduce urine pH (a surrogate for metabolic acidosis) without reducing prepartum DMI. A secondary objective was to assess the effect of these anionic supplements on postpartum serum calcium concentrations and DMI. Prepartum multiparous Holstein (HO) and crossbred (XX) cows were blocked by breed and expected calving date and randomly assigned within breed to total mixed rations (TMR) with MA or SC and DCAD values of -215 mEq/kg of DM. Cows (n = 56; 15 MA-HO, 12 SC-HO, 15 MA-XX, 14 SC-XX) consumed the treatment TMR for at least 19 d and completed the 28 d in milk (DIM) phase of the study. Urine and blood samples were collected weekly and at 1, 2, and 3 DIM. Data were analyzed as a randomized block design by repeated measures with week or DIM as the repeated effect. Prepartum urine pH decreased from 8.15 ± 0.27 before treatment to 6.12 ± 0.14 during treatment, was not affected by anionic supplement, and increased immediately after calving when all cows consumed the same early-lactation TMR. Prepartum serum calcium concentrations were not affected (2.34 vs. 2.33 ± 0.02 mmol/L) by treatment, whereas nonesterified fatty acids were lower (86 vs. 120 ± 10 mmol/L) and insulin was greater (215 vs. 174 ± 10 pmol/L) in cows fed MA than in cows fed SC. These differences are supported by the numerically greater prepartum DMI (1.2 kg/d) and energy balance (1.8 Mcal/d) of cows fed MA. However, pre- and postpartum DMI and other production variables, including body weight, body condition score, milk yield, and energy balance, were not affected by treatment. This lack of difference indicates that MA provides another effective source of anionic salts for diets designed to reduce urine pH and induce metabolic acidosis in prepartum dairy cows.
Assuntos
Ração Animal/análise , Ânions/metabolismo , Cálcio/sangue , Bovinos/fisiologia , Ingestão de Alimentos , Lactação , Animais , Ânions/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Paridade , Distribuição AleatóriaRESUMO
Pharmacokinetic (PK) studies of oral firocoxib in large animal species have been limited to horses, preruminating calves, and adult camels. The aim of this study was to describe pharmacokinetics and bioavailability of firocoxib in adult goats. Ten healthy adult goats were administered 0.5 mg/kg firocoxib intravenously (i.v.) and per os (p.o.) in a randomized, crossover study. Plasma firocoxib concentrations were measured over a 96-hr period for each treatment using HPLC and mass spectrometry, and PK analysis was performed. The p.o. formulation reached mean peak plasma concentration of 139 ng/ml (range: 87-196 ng/ml) in 0.77 hr (0.25-2.00 hr), and half-life was 21.51 hr (10.21-48.32 hr). Mean bioavailability was 71% (51%-82%), indicative of adequate gastrointestinal absorption of firocoxib. There were no negative effects observed in any animal, and all blood work values remained within or very near reference range at the study's conclusion. Results indicate that oral firocoxib is well-absorbed and rapidly reaches peak plasma concentrations, although the concentration also decreased quickly prior to the terminal phase. The prolonged half-life may suggest tissue accumulation and higher plasma concentrations over time, depending on dosing schedule. Further studies to determine tissue residue depletion, pharmacodynamics, and therapeutic concentrations of firocoxib in goats are necessary.
Assuntos
4-Butirolactona/análogos & derivados , Anti-Inflamatórios não Esteroides/farmacocinética , Cabras/sangue , Sulfonas/farmacocinética , 4-Butirolactona/sangue , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacocinética , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/sangue , Área Sob a Curva , Estudos Cross-Over , Feminino , Cabras/metabolismo , Meia-Vida , Sulfonas/sangue , Sulfonas/metabolismoRESUMO
Displaced abomasum (DA) is a postpartum disease that causes significant economic losses in the dairy industry. Abomasal atony and excessive production of gas have been reported as prerequisites for the development of DA. The exact cause of DA is unknown, yet infectious and metabolic disease, diet composition and physical form, cow comfort, and management of dairy cows during the transition period have been associated with the occurrence of this disorder. This review article discusses different factors that lead to the development of DA and strategies for monitoring DA and its comorbidities at the herd level.
Assuntos
Abomaso/patologia , Doenças dos Bovinos/patologia , Doenças dos Bovinos/prevenção & controle , Indústria de Laticínios/métodos , Gastropatias/veterinária , Animais , Bovinos , Feminino , Gastropatias/prevenção & controleRESUMO
Modern dairy cows meet the energy demand of early lactation by calling on hormonally driven mechanisms to increase the use of lipid reserves. In this context, we recently reported that fibroblast growth factor-21 (FGF21), a hormone required for efficient use of lipid reserves in rodents, is upregulated in periparturient dairy cows. Increased plasma FGF21 in early lactation coincides with elevated circulating concentrations of glucagon (GCG) and nonesterified fatty acids (NEFA). To assess the relative contribution of these factors in regulating FGF21, two experiments were performed in energy-sufficient, nonpregnant, nonlactating dairy cows. In the first study, cows were injected with saline or GCG every 8 h over a 72-h period. GCG increased hepatic FGF21 mRNA by an average of fivefold over matched controls but had no effect on plasma FGF21. In the second study, cows were infused and injected with saline, infused with Intralipid and injected with saline, or infused with Intralipid and injected with GCG. Infusions and injections were administered intravenously over 16 h and subcutaneously every 8 h, respectively. Intralipid infusion increased plasma NEFA from 92 to 550 µM within 3 h and increased plasma FGF21 from 1.3 to >11 ng/ml 6 h later; FGF21 mRNA increased by 34-fold in liver but remained invariant in adipose tissue. GCG injections during the Intralipid infusion had no additional effects on plasma NEFA, liver FGF21 mRNA, or plasma FGF21. These data implicate plasma NEFA as a key factor triggering hepatic production and increased circulating concentrations of FGF21 in early lactation.
Assuntos
Tecido Adiposo/metabolismo , Ácidos Graxos não Esterificados/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Glucagon/metabolismo , Fígado/metabolismo , Animais , Bovinos , Feminino , Glucagon/farmacologia , Lactação/fisiologia , Fígado/efeitos dos fármacos , RNA Mensageiro/genética , Regulação para CimaRESUMO
Papillomatous digital dermatitis (PDD) is one of the most prevalent diseases of cattle, adversely affecting the dairy industry by its negative effect on milk production and reproductive performance. Our objective was to use culture-independent methods to determine the microbial diversity in different strata of PDD lesions of three Holstein dairy cows, analyzing whether major differences exist compared to foot skin of three non-infected cows. Both group-specific 16S rRNA gene PCR-denaturing gradient gel electrophoresis and clone library sequencing of broad-range 16S rRNA gene showed differences between the microbial composition of healthy dairy cows and the different strata of the lesion. The predominant bacterial community in the lesion, regardless of the stratum, consisted of 166 specific phylotypes belonging to seven bacterial phyla. Spirochetes (particularly, treponemes) was the most prominent group detected in PDD deep biopsies and was only found in samples from the lesion. Additionally, one phylotype phylogenetically affiliated with uncultured Euryarchaeota was detected in two strata of the lesion. Sequences from healthy foot skin samples revealed 86 specific phylotypes that were affiliated with Firmicutes and Proteobacteria. Our study corroborates the theory that treponemes are involved in PDD disease etiology and suggests, for the first time, the presence of archaeal members in this particular bovine infection.
Assuntos
Bactérias/classificação , Doenças dos Bovinos/microbiologia , Dermatite Digital/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Biodiversidade , Bovinos , Feminino , Dados de Sequência Molecular , New York , Reação em Cadeia da Polimerase , Spirochaetales/classificação , Spirochaetales/genética , Spirochaetales/isolamento & purificação , Infecções por Spirochaetales/veterinária , Treponema/classificação , Treponema/genética , Treponema/crescimento & desenvolvimentoRESUMO
OBJECTIVE: To develop a parsimonious statistical model to predict incidence of lameness in the subsequent lactation by use of data collected at cessation of lactation in dairy cows. ANIMALS: 574 cows. PROCEDURES: At cessation of lactation during hoof trimming, body condition score (BCS), visual locomotion score, digital cushion thickness (DCT), and digital lesions were assessed. RESULTS: 140 (24%) cows were treated for claw horn disruption lesions (CHDLs) at cessation of lactation (114 with sole ulcers [pododermatitis circumscripta] and 26 with white line disease). The BCS was highly associated with DCT. Cows with CHDLs at cessation of lactation had significantly lower DCT, compared with other cows. All 3 logistic regression models predicted the incidence of CHDLs in the subsequent lactation with good accuracy; the area under the receiver operating characteristic curves was 0.76, 0.76, and 0.77 for the first, second, and third logistic regression models, respectively. CONCLUSION AND CLINICAL RELEVANCE: Evaluation of 3 logistic regression models indicated that lameness could be predicted with good accuracy by use of all 3. The ability to predict lameness will facilitate the implementation of lameness prevention strategies by targeting specific cows.
Assuntos
Doenças dos Bovinos/diagnóstico , Indústria de Laticínios , Doenças do Pé/veterinária , Casco e Garras/patologia , Lactação/fisiologia , Coxeadura Animal/diagnóstico , Animais , Constituição Corporal , Bovinos , Feminino , Doenças do Pé/diagnóstico , Doenças do Pé/patologia , Modelos Logísticos , Modelos EstatísticosRESUMO
OBJECTIVE: To isolate and characterize bacteriophages with strong in vitro lytic activity against various pathogenic Pseudomonas aeruginosa strains isolated from dogs with ocular infections. SAMPLE: 26 genetically distinct P aeruginosa isolates. PROCEDURES: P aeruginosa strains were derived from dogs with naturally acquired ulcerative keratitis. From a large-scale screening for bacteriophages with potential therapeutic benefit against canine ocular infections, 2 bacteriophages (P2S2 and P5U5) were selected; host ranges were determined, and phage nucleic acid type and genetic profile were identified via enzymatic digestion. Electron microscopy was used to characterize bacteriophage ultrastructure. Bacteriophage temperature and pH stabilities were assessed by use of double-layer agar overlay titration. A cocultivation assay was used to evaluate the effect of the bacteriophages on bacterial host growth. RESULTS: P5U5 was active against all P aeruginosa isolates, whereas P2S2 formed lytic plaques on plates of 21 (80.8%) isolates. For each bacteriophage, the genomic nucleic acid was DNA; each was genetically distinct. Ultrastructurally, P2S2 and P5U5 appeared likely to belong to the Podoviridae and Siphoviridae families, respectively. The bacteriophages were stable within a pH range of 4 to 12; however, titers of both bacteriophages decreased following heating for 10 to 50 minutes at 45° or 60°C. Growth of each P aeruginosa isolate was significantly inhibited in coculture with P2S2 or P5U5; the dose response was related to the plaque-forming unit-to-CFU ratios. CONCLUSIONS AND CLINICAL RELEVANCE: Bacteriophages P2S2 and P5U5 appear to be good candidates for phage treatment of infection caused by pathogenic P aeruginosa in dogs.