RESUMO
Picornaviruses are a leading cause of central nervous system (CNS) infections. While genotypes such as parechovirus A3 (PeV-A3) and echovirus 11 (E11) can elicit severe neurological disease, the highly prevalent PeV-A1 is not associated with CNS disease. Here, we expand our current understanding of these differences in PeV-A CNS disease using human brain organoids and clinical isolates of the two PeV-A genotypes. Our data indicate that PeV-A1 and A3 specific differences in neurological disease are not due to infectivity of CNS cells as both viruses productively infect brain organoids with a similar cell tropism. Proteomic analysis shows that PeV-A infection significantly alters the host cell metabolism. The inflammatory response following PeV-A3 (and E11 infection) is significantly more potent than that upon PeV-A1 infection. Collectively, our findings align with clinical observations and suggest a role for neuroinflammation, rather than viral replication, in PeV-A3 (and E11) infection.
Assuntos
Doenças do Sistema Nervoso Central , Parechovirus , Infecções por Picornaviridae , Humanos , Parechovirus/genética , Proteômica , Inflamação , Encéfalo , Enterovirus Humano BRESUMO
Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro. We identified several novel, synergistic two-drug and three-drug combinations that demonstrated significant inhibition of enterovirus infections in vitro. Specifically, the triple-drug combination of pleconaril, rupintrivir, and remdesivir exhibited remarkable efficacy against echovirus (EV) 1, EV6, EV11, and coxsackievirus (CV) B5, in human lung epithelial A549 cells. This combination surpassed the effectiveness of single-agent or dual-drug treatments, as evidenced by its ability to protect A549 cells from EV1-induced cytotoxicity across seven passages. Additionally, this triple-drug cocktail showed potent antiviral activity against EV-A71 in human intestinal organoids. Thus, our findings highlight the therapeutic potential of the pleconaril-rupintrivir-remdesivir combination as a broad-spectrum treatment option against a range of enterovirus infections. The study also paves the way towards development of strategic antiviral drug combinations with virus family coverage and high-resistance barriers.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Isoxazóis , Oxidiazóis , Oxazóis , Fenilalanina/análogos & derivados , Pirrolidinonas , Valina/análogos & derivados , Animais , Humanos , Infecções por Enterovirus/tratamento farmacológico , Enterovirus Humano B , Antivirais/farmacologia , Antivirais/uso terapêutico , Combinação de MedicamentosRESUMO
Halofuginone hydrobromide has shown potent antiviral efficacy against a variety of viruses such as SARS-CoV-2, dengue, or chikungunya virus, and has, therefore, been hypothesized to have broad-spectrum antiviral activity. In this paper, we tested this broad-spectrum antiviral activity of Halofuginone hydrobomide against viruses from different families (Picornaviridae, Herpesviridae, Orthomyxoviridae, Coronaviridae, and Flaviviridae). To this end, we used relevant human models of the airway and intestinal epithelium and regionalized neural organoids. Halofuginone hydrobomide showed antiviral activity against SARS-CoV-2 in the airway epithelium with no toxicity at equivalent concentrations used in human clinical trials but not against any of the other tested viruses.
Assuntos
Antivirais , Piperidinas , Quinazolinonas , Vírus , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Sistemas Microfisiológicos , SARS-CoV-2 , EncéfaloRESUMO
Non-polio enteroviruses (EV) belonging to species C, which are highly prevalent in Africa, mainly among children, are poorly characterized, and their pathogenesis is mostly unknown as they are difficult to culture. In this study, human airway and intestinal organotypic models were used to investigate tissue and cellular tropism of three EV-C genotypes, EV-C99, CVA-13, and CVA-20. Clinical isolates were obtained within the two passages of culture on Caco2 cells, and all three viruses were replicated in both the human airway and intestinal organotypic cultures. We did not observe differences in viral replication between fetal and adult tissue that could potentially explain the preferential infection of infants by EV-C genotypes. Infection of the airway and the intestinal cultures indicates that they both can serve as entry sites for non-polio EV-C. Ciliated airway cells and enterocytes are the target of infection for all three viruses, as well as enteroendocrine cells for EV-C99.
Assuntos
Infecções por Enterovirus , Enterovirus , Adulto , Criança , Lactente , Humanos , Células CACO-2 , Sistemas Microfisiológicos , Intestinos , Enterócitos , Antígenos Virais , Enterovirus/genéticaRESUMO
Enterovirus A71 (EV-A71) can elicit a wide variety of human diseases such as hand, foot, and mouth disease and severe or fatal neurological complications. It is not clearly understood what determines the virulence and fitness of EV-A71. It has been observed that amino acid changes in the receptor binding protein, VP1, resulting in viral binding to heparan sulfate proteoglycans (HSPGs) may be important for the ability of EV-A71 to infect neuronal tissue. In this study, we identified that the presence of glutamine, as opposed to glutamic acid, at VP1-145 is key for viral infection in a 2D human fetal intestinal model, consistent with previous findings in an airway organoid model. Moreover, pre-treatment of EV-A71 particles with low molecular weight heparin to block HSPG-binding significantly reduced the infectivity of two clinical EV-A71 isolates and viral mutants carrying glutamine at VP1-145. Our data indicates that mutations in VP1 leading to HSPG-binding enhances viral replication in the human gut. These mutations resulting in increased production of viral particles at the primary replication site could lead to a higher risk of subsequent neuroinfection. Importance: With the near eradication of polio worldwide, polio-like illness (as is increasingly caused by EV-A71 infections) is of emerging concern. EV-A71 is indeed the most neurotropic enterovirus that poses a major threat globally to public health and specifically in infants and young children. Our findings will contribute to the understanding of the virulence and the pathogenicity of this virus. Further, our data also supports the identification of potential therapeutic targets against severe EV-A71 infection especially among infants and young children. Furthermore, our work highlights the key role of HSPG-binding mutations in the disease outcome of EV-A71. Additionally, EV-A71 is not able to infect the gut (the primary replication site in humans) in traditionally used animal models. Thus, our research highlights the need for human-based models to study human viral infections.Graphical Abstract.
RESUMO
The tumor micro-environment (TME) of hepatocellular carcinoma (HCC) consists out of cirrhotic liver tissue and is characterized by an extensive deposition of extracellular matrix proteins (ECM). The evolution from a reversible fibrotic state to end-stage of liver disease, namely cirrhosis, is characterized by an increased deposition of ECM, as well as changes in the exact ECM composition, which both contribute to an increased liver stiffness and can alter tumor phenotype. The goal of this study was to assess how changes in matrix composition and stiffness influence tumor behavior. HCC-cell lines were grown in a biomimetic hydrogel model resembling the stiffness and composition of a fibrotic or cirrhotic liver. When HCC-cells were grown in a matrix resembling a cirrhotic liver, they increased proliferation and protein content, compared to those grown in a fibrotic environment. Tumour nodules spontaneously formed outside the gels, which appeared earlier in cirrhotic conditions and were significantly larger compared to those found outside fibrotic gels. These tumor nodules had an increased expression of markers related to epithelial-to-mesenchymal transition (EMT), when comparing cirrhotic to fibrotic gels. HCC-cells grown in cirrhotic gels were also more resistant to doxorubicin compared with those grown in fibrotic gels or in 2D. Therefore, altering ECM composition affects tumor behavior, for instance by increasing pro-metastatic potential, inducing EMT and reducing response to chemotherapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Biomimética , Matriz Extracelular/metabolismo , Cirrose Hepática/patologia , Proteínas da Matriz Extracelular/metabolismo , Microambiente TumoralRESUMO
Human milk is important for antimicrobial defense in infants and has well demonstrated antiviral activity. We evaluated the protective ability of human milk against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a human fetal intestinal cell culture model. We found that, in this model, human milk blocks SARS-CoV-2 replication, irrespective of the presence of SARS-CoV-2 spike-specific antibodies. Complete inhibition of both enveloped Middle East respiratory syndrome coronavirus and human respiratory syncytial virus infections was also observed, whereas no inhibition of non-enveloped enterovirus A71 infection was seen. Transcriptome analysis after 24 h of the intestinal monolayers treated with human milk showed large transcriptomic changes from human milk treatment, and subsequent analysis suggested that <i>ATP1A1</i> down-regulation by milk might be of importance. Inhibition of ATP1A1 blocked SARS-CoV-2 infection in our intestinal model, whereas no effect on EV-A71 infection was seen. Our data indicate that human milk has potent antiviral activity against particular (enveloped) viruses by potentially blocking the ATP1A1-mediated endocytic process.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Antivirais/farmacologia , Humanos , Leite HumanoRESUMO
Cytostatic effects of doxorubicin in clinically applied doses are often inadequate and limited by systemic toxicity. The main objective of this in vitro study was to determine the anti-tumoral effect (IC50) and intracellular accumulation of free and liposomal doxorubicin (DOX) in four human cancer cell lines (HepG2, Huh7, SNU449 and MCF7). The results of this study showed a correlation between longer DOX exposure time and lower IC50 values, which can be attributed to an increased cellular uptake and intracellular exposure of DOX, ultimately leading to cell death. We found that the total intracellular concentrations of DOX were a median value of 230 times higher than the exposure concentrations after exposure to free DOX. The intracellular uptake of DOX from solution was at least 10 times higher than from liposomal formulation. A physiologically based pharmacokinetic model was developed to translate these novel quantitative findings to a clinical context and to simulate clinically relevant drug concentration-time curves. This showed that a liver tumor resembling the liver cancer cell line SNU449, the most resistant cell line in this study, would not reach therapeutic exposure at a standard clinical parenteral dose of doxorubicin (50 mg/m2), which is serious limitation for this drug. This study emphasizes the importance of in-vitro to in-vivo translations in the assessment of clinical consequence of experimental findings.
Assuntos
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Lipossomos/química , Antibióticos Antineoplásicos/farmacologia , Disponibilidade Biológica , Transporte Biológico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Portadores de Fármacos , Células Hep G2 , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Células MCF-7 , Modelos Biológicos , Modelos Estatísticos , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologiaRESUMO
Metabolic and personalized interventions in cancer treatment require a better understanding of the relationship between the induction of cell death and metabolism. Consequently, we treated three primary liver cancer cell lines with two anthracyclins (doxorubicin and idarubin) and studied the changes in the lipidome. We found that both anthracyclins in the three cell lines increased the levels of polyunsaturated fatty acids (PUFAs) and alkylacylglycerophosphoethanolamines (etherPEs) with PUFAs. As PUFAs and alkylacylglycerophospholipids with PUFAs are fundamental in lipid peroxidation during ferroptotic cell death, our results suggest supplementation with PUFAs and/or etherPEs with PUFAs as a potential general adjuvant of anthracyclins. In contrast, neither the markers of de novo lipogenesis nor cholesterol lipids presented the same trend in all cell lines and treatments. In agreement with previous research, this suggests that modulation of the metabolism of cholesterol could be considered a specific adjuvant of anthracyclins depending on the type of tumor and the individual. Finally, in agreement with previous research, we found a relationship across the different cell types between: (i) the change in endoplasmic reticulum (ER) stress, and (ii) the imbalance between PUFAs and cholesterol and saturated lipids. In the light of previous research, this imbalance partially explains the sensitivity to anthracyclins of the different cells. In conclusion, our results suggest that the modulation of different lipid metabolic pathways may be considered for generalized and personalized metabochemotherapies.
Assuntos
Antraciclinas/farmacologia , Estresse do Retículo Endoplasmático , Ácidos Graxos Insaturados/metabolismo , Lipídeos , Lipogênese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/metabolismo , Morte Celular , Linhagem Celular Tumoral , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Células Hep G2 , Humanos , Peroxidação de Lipídeos , Lipidômica , Lipídeos/química , Fígado/metabolismo , Neoplasias Hepáticas/metabolismoRESUMO
Growing cells as 3D structures need not be difficult. Often, it is not necessary to change cell type, additives or growth media used. All that needs to be changed is the geometry: cells (whether primary, induced pluripotent, transformed or immortal) simply have to be grown in conditions that promote cell-cell adhesion while allowing gas, nutrient, signal, and metabolite exchange. Downstream analysis can become more complicated because many assays (like phase contrast microscopy) cannot be used, but their replacements have been in use for many years. Most importantly, there is a huge gain in value in obtaining data that is more representative of the organism in vivo. It is the goal of the protocols presented here to make the transition to a new dimension as painless as possible. Grown optimally, most biopsy derived organoids will retain patient phenotypes, while cell (both stem cell, induced or otherwise or immortalized) derived organoids or spheroids will recover tissue functionality.
Assuntos
Técnicas de Cultura de Células/métodos , Organoides/crescimento & desenvolvimento , Esferoides Celulares/citologia , Diferenciação Celular/fisiologia , Humanos , Organoides/citologia , Esferoides Celulares/metabolismo , Células-Tronco/citologiaRESUMO
Colorectal cancer remains to be one of the leading causes of death worldwide, with millions of patients diagnosed each year. Although chemotherapeutic drugs are routinely used to treat cancer, these treatments have severe side effects. As a result, the use of herbal medicines has gained increasing popularity as a treatment for cancer. In this study, two South African medicinal plants widely used to treat various diseases, Sutherlandia frutescens and Xysmalobium undulatum, were evaluated for potential activity against colorectal cancer. This potential activity for the treatment of colorectal cancer was assessed relative to the known chemotherapeutic drug, paclitaxel. The cytotoxic activity was considered in an advanced three-dimensional (3D) sodium alginate encapsulated LS180 colorectal cancer functional spheroid model, cultured in clinostat-based rotating bioreactors. The LS180 cell mini-tumors were treated for 96 h with two concentrations of each of the crude aqueous extracts or paclitaxel. S. frutescens extract markedly decreased the soluble protein content, while decreasing ATP and AK per protein content to below detectable limits after only 24 h exposure. X. undulatum extract also decreased the soluble protein content, cell viability, and glucose consumption. The results suggested that the two phytomedicines have potential to become a source of new treatments against colorectal cancer.
Assuntos
Antineoplásicos/farmacologia , Apocynaceae/química , Neoplasias Colorretais/tratamento farmacológico , Fabaceae/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Glucose/metabolismo , Humanos , Plantas Medicinais/químicaRESUMO
Hepatocellular carcinoma (HCC) is a liver tumor that usually arises in patients with cirrhosis. Hepatic stellate cells are key players in the progression of HCC, as they create a fibrotic micro-environment and produce growth factors and cytokines that enhance tumor cell proliferation and migration. We assessed the role of endoplasmic reticulum (ER) stress in the cross-talk between stellate cells and HCC cells. Mice with a fibrotic HCC were treated with the IRE1α-inhibitor 4µ8C, which reduced tumor burden and collagen deposition. By co-culturing HCC-cells with stellate cells, we found that HCC-cells activate IREα in stellate cells, thereby contributing to their activation. Inhibiting IRE1α blocked stellate cell activation, which then decreased proliferation and migration of tumor cells in different in vitro 2D and 3D co-cultures. In addition, we also observed cell-line-specific direct effects of inhibiting IRE1α in tumor cells.
Assuntos
Antineoplásicos/farmacologia , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Himecromona/análogos & derivados , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Proliferação de Células , Quimiotaxia , Técnicas de Cocultura , Endorribonucleases/genética , Humanos , Himecromona/farmacologia , Neoplasias Hepáticas , Neoplasias Hepáticas Experimentais , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/genética , Alicerces TeciduaisRESUMO
Hepatocellular carcinoma (HCC) is a primary liver tumor developing in the wake of chronic liver disease. Chronic liver disease and inflammation leads to a fibrotic environment actively supporting and driving hepatocarcinogenesis. Insight into hepatocarcinogenesis in terms of the interplay between the tumor stroma micro-environment and tumor cells is thus of considerable importance. Three-dimensional (3D) cell culture models are proposed as the missing link between current in vitro 2D cell culture models and in vivo animal models. Our aim was to design a novel 3D biomimetic HCC model with accompanying fibrotic stromal compartment and vasculature. Physiologically relevant hydrogels such as collagen and fibrinogen were incorporated to mimic the bio-physical properties of the tumor ECM. In this model LX2 and HepG2 cells embedded in a hydrogel matrix were seeded onto the inverted transmembrane insert. HUVEC cells were then seeded onto the opposite side of the membrane. Three formulations consisting of ECM-hydrogels embedded with cells were prepared and the bio-physical properties were determined by rheology. Cell viability was determined by a cell viability assay over 21 days. The effect of the chemotherapeutic drug doxorubicin was evaluated in both 2D co-culture and our 3D model for a period of 72h. Rheology results show that bio-physical properties of a fibrotic, cirrhotic and HCC liver can be successfully mimicked. Overall, results indicate that this 3D model is more representative of the in vivo situation compared to traditional 2D cultures. Our 3D tumor model showed a decreased response to chemotherapeutics, mimicking drug resistance typically seen in HCC patients.
Assuntos
Biomimética , Carcinoma Hepatocelular/patologia , Doxorrubicina/farmacologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral , Antibióticos Antineoplásicos/farmacologia , Biofísica , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular , Técnicas de Cocultura , Células Hep G2 , Humanos , Hidrogéis/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismoRESUMO
Colorectal cancer is one of the leading causes of cancer-related deaths. A main problem for its treatment is resistance to chemotherapy, requiring the development of new drugs. The success rate of new candidate cancer drugs in clinical trials remains dismal. Three-dimensional (3D) cell culture models have been proposed to bridge the current gap between in vitro chemotherapeutic studies and the human in vivo, due to shortcomings in the physiological relevance of the commonly used two-dimensional cell culture models. In this study, LS180 colorectal cancer cells were cultured as 3D sodium alginate encapsulated spheroids in clinostat bioreactors. Growth and viability were evaluated for 20 days to determine the ideal experimental window. The 3- (4,5- dimethylthiazol- 2- yl)-2,5-diphenyltetrazolium bromide assay was then used to establish half maximal inhibitory concentrations for the standard chemotherapeutic drug, paclitaxel. This concentration was used to further evaluate the established 3D model. During model characterization and evaluation soluble protein content, intracellular adenosine triphosphate levels, extracellular adenylate kinase, glucose consumption, and P-glycoprotein (P-gp) gene expression were measured. Use of the model for chemotherapeutic treatment screening was evaluated using two concentrations of paclitaxel, and treatment continued for 96 h. Paclitaxel caused a decrease in cell growth, viability, and glucose consumption in the model. Furthermore, relative expression of P-gp increased compared to the untreated control group. This is a typical resistance-producing change, seen in vivo and known to be a result of paclitaxel treatment. It was concluded that the LS180 sodium alginate encapsulated spheroid model could be used for testing new chemotherapeutic compounds for colorectal cancer.
RESUMO
Fibrin is an essential constituent of the coagulation cascade, and the formation of hemostatic fibrin clots is central to wound healing. Fibrin clots are over time degraded into fibrin degradation products as the injured tissue is replaced by granulation tissue. Our goal was to study the role of the fibrin degradation product fragment E (FnE) in fibroblast activation and migration. We present evidence that FnE is a chemoattractant for fibroblasts and that FnE can potentiate TGF-ß-induced myofibroblast formation. FnE forms a stable complex with αVß3 integrin, and the integrin ß3 subunit is required both for FnE-induced fibroblast migration and for potentiation of TGF-ß-induced myofibroblast formation. Finally, subcutaneous infusion of FnE in mice results in a fibrotic response in the hypodermis. These results support a model where FnE released from clots in wounded tissue promote wound healing and fibrosis by both recruitment and activation of fibroblasts. Fibrin fragment E could thus represent a therapeutic target for treatment of pathological fibrosis.
Assuntos
Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Miofibroblastos/patologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Feminino , Fibrose , Humanos , Integrina alfaVbeta3/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia , Receptor 4 Toll-Like/metabolismoRESUMO
ETHNOPHARMACOLOGY RELEVANCE: Traditional herbal medicines are utilized by 27 million South Africans. Xysmalobium undulatum (Uzara) is one of the most widely used traditional medicinal plants in Southern Africa. A false belief in the safety of herbal medicine may result in liver injury. Herb-induced liver injury (HILI) range from asymptomatic elevation of liver enzymes, to cirrhosis and in certain instances even acute liver failure. Various in vitro and in vivo models are available for the pre-clinical assessment of drug and herbal hepatotoxicity. However, more reliable and readily available in vitro models are needed, which are capable of bridging the gap between existing models and real human exposure. Three-dimensional (3D) spheroid cultures offer higher physiological relevance, overcoming many of the shortcomings of traditional two-dimensional cell cultures. AIMS OF THIS STUDY: This study investigated the hepatotoxic and anti-prolific effects of the crude X. undulatum aqueous extract during a sub-chronic study (21 days), in both a 3D HepG2/C3A spheroid model and the Sprague Dawley rat model. METHODS: HepG2/C3A spheroids were treated with a known hepatotoxin, valproic acid, and crude X. undulatum aqueous extract for 21 days with continuous evaluation of cell viability and proliferation. This was done by evaluating cell spheroid growth, intracellular adenosine triphosphate (ATP) levels and extracellular adenylate kinase (AK). Sprague Dawley rats were treated with the same compounds over 21 days, with evaluation of in vivo toxicity effects on serum chemistry. RESULTS: The results from the in vitro study clearly indicated hepatotoxic effects and possible liver damage following treatment with valproic acid, with associated growth inhibition, loss of cell viability and increased cytotoxicity as indicated by reduced intracellular ATP levels and increased AK levels. These results were supported by the increased in vivo levels of AST, ALT and LDH following treatment of the Sprague Dawley rats with valproic acid, indicative of hepatic cellular damage that may result in hepatotoxicity. The in vitro 3D spheroid model was also able to predict the potential concentration dependant hepatotoxicity of the crude X. undulatum aqueous extract. Similarly, the results obtained from the in vivo Sprague Dawley model indicated moderate hepatotoxic potential. CONCLUSION: The data from both the 3D spheroid model and the Sprague Dawley model were able to indicate the potential concentration dependant hepatotoxicity of the crude X. undulatum aqueous extract. The results obtained from this study also confirmed the ability of the 3D spheroid model to effectively and reliably predict the long-term outcomes of possible hepatotoxicity.
Assuntos
Apocynaceae , Doença Hepática Induzida por Substâncias e Drogas , Extratos Vegetais/toxicidade , Esferoides Celulares/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Feminino , Células Hep G2 , Humanos , L-Lactato Desidrogenase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Medicinas Tradicionais Africanas , Ratos Sprague-Dawley , África do Sul , Esferoides Celulares/metabolismo , Testes de Toxicidade Subcrônica , Ácido ValproicoRESUMO
Xysmalobium undulatum (Uzara) is one of the most widely used indigenous traditional herbal remedies in Southern Africa. Commercially available Uzara plant material was used to prepare a crude aqueous extract, of which the toxicity potential was investigated in the hepatic HepG2/C3A cell line in both traditional two-dimensional (2D) and rotating three-dimensional (3D) spheroid cell cultures. These cultures were treated over a period of 4 days at concentrations of 200, 350, 500, and 750 mg/kg plant extract to protein content. Basic physiological parameters of the cell cultures were measured during exposure, including cell proliferation, glucose uptake, intracellular adenosine triphosphate levels, and adenylate kinase release. The results indicated that all physiological parameters monitored were affected in a dose dependent manner, with the highest concentration of Uzara crude water extract (750 mg/kg) resulting in toxicity. Anti-proliferating effects of Uzara crude water extract were observed in both the 2D and 3D cell cultures, with the most pronounced effects at concentrations of 350, 500, and 750 mg/kg. Discrepancies between results obtained from the 2D and 3D cell culture models may be attributed to the type of repair system that is initiated upon exposure, depending on where cells are within the cell cycle. DNA repair systems differ in cells within the G1 phase and non-diving cells, (i.e. cells found predominantly in in vitro 3D and the in vivo situation).
Assuntos
Apocynaceae/química , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/toxicidade , Esferoides Celulares/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Extratos Vegetais/isolamento & purificação , Esferoides Celulares/citologiaRESUMO
The liver is a vital organ fulfilling a central role in over 500 major metabolic functions, including serving as the most essential site for drug biotransformation. Dysfunction of the drug biotransformation processes may result in the exposure of the liver (and other organs) to hepatotoxins, potentially interacting with cellular constituents and causing toxicity and various lesions. Hepatotoxicity can be investigated on a tissue, cellular and molecular level by employing various in vivo and in vitro techniques, including novel three-dimensional (3 D) cell culturing methods. This paper reflects on the liver and its myriad of functions and the influence of drug biotransformation on liver dysfunction. Current in vivo and in vitro models used to study liver function and dysfunction is outlined, emphasizing their advantages and disadvantages. The advantages of novel in vitro 3 D cell culture models are discussed and the possibility of novel models to bridge the gap between in vitro and in vivo models is explained. Progression made in the field of cell culturing methods such as 3 D cell culturing techniques over the last decade promises to reduce the use of in vivo animal models in biotransformation and toxicological studies of the liver.
Assuntos
Técnicas de Cultura de Células/tendências , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Descoberta de Drogas/tendências , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testes de Toxicidade/tendências , Alternativas aos Testes com Animais/tendências , Animais , Biotransformação , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Difusão de Inovações , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Medição de Risco , Especificidade da EspécieRESUMO
BACKGROUND: Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo state, may be of significant benefit for cfDNA research. METHODS: CfDNA was isolated from the growth medium of C3A spheroid cultures in rotating bioreactors during both normal growth and treatment with acetaminophen. Spheroid growth was monitored via planimetry, lactate dehydrogenase activity and glucose consumption and was related to isolated cfDNA characteristics. RESULTS: Changes in spheroid growth and stability were effectively mirrored by cfDNA characteristics. CfDNA characteristics correlated with that of previous two-dimensional (2D) cell culture and human plasma research. CONCLUSIONS: 3D spheroid cultures can serve as effective, simplified in vivo-simulating "closed-circuit" models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. BIOLOGICAL SIGNIFICANCE: 3D cell cultures can be used to translate "closed-circuit" in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth environment. Combining 3D culture and cfDNA research could, therefore, optimize both research fields.
Assuntos
Ácidos Nucleicos Livres/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Glucose/metabolismo , Células Hep G2 , HumanosRESUMO
Patients receiving anti-retroviral drug treatment are sometimes simultaneously taking herbal remedies, which may result in pharmacokinetic herb-drug interactions. This study aimed to determine if pharmacokinetic interactions exist between selected commercially available herbal products (i.e., Linctagon Forte(®), Viral Choice(®) and Canova(®)) and indinavir in terms of in vitro transport and metabolism. Bi-directional transport of indinavir was evaluated across Caco-2 cell monolayers in the presence and absence of the selected herbal products and verapamil (positive control). Metabolism of indinavir was determined in LS180 cells in the presence and absence of the selected herbal products as well as ketoconazole (positive control). The secretory transport of indinavir increased in a concentration dependent way in the presence of Linctagon Forte(®) and Viral Choice(®) when compared to that of indinavir alone. Canova(®) only slightly affected the efflux of indinavir compared to that of the control group. There was a pronounced inhibition of the metabolism of indinavir in LS180 cells over the entire concentration range for all the herbal products investigated in this study. These in vitro pharmacokinetic interactions indicate the selected herbal products may affect indinavir's bioavailability, but the clinical significance needs to be confirmed with in vivo studies before final conclusions can be made.