Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
PLoS One ; 19(5): e0299602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696439

RESUMO

PURPOSE: The purposes of this study were to determine whether biomechanical properties of mature oocytes could predict usable blastocyst formation better than morphological information or maternal factors, and to demonstrate the safety of the aspiration measurement procedure used to determine the biomechanical properties of oocytes. METHODS: A prospective split cohort study was conducted with patients from two IVF clinics who underwent in vitro fertilization. Each patient's oocytes were randomly divided into a measurement group and a control group. The aspiration depth into a micropipette was measured, and the biomechanical properties were derived. Oocyte fertilization, day 3 morphology, and blastocyst development were observed and compared between measured and unmeasured cohorts. A predictive classifier was trained to predict usable blastocyst formation and compared to the predictions of four experienced embryologists. RESULTS: 68 patients and their corresponding 1252 oocytes were included in the study. In the safety analyses, there was no significant difference between the cohorts for fertilization, while the day 3 and 5 embryo development were not negatively affected. Four embryologists predicted usable blastocyst development based on oocyte morphology with an average accuracy of 44% while the predictive classifier achieved an accuracy of 71%. Retaining the variables necessary for normal fertilization, only data from successfully fertilized oocytes were used, resulting in a classifier an accuracy of 81%. CONCLUSIONS: To date, there is no standard guideline or technique to aid in the selection of oocytes that have a higher likelihood of developing into usable blastocysts, which are chosen for transfer or vitrification. This study provides a comprehensive workflow of extracting biomechanical properties and building a predictive classifier using these properties to predict mature oocytes' developmental potential. The classifier has greater accuracy in predicting the formation of usable blastocysts than the predictions provided by morphological information or maternal factors. The measurement procedure did not negatively affect embryo culture outcomes. While further analysis is necessary, this study shows the potential of using biomechanical properties of oocytes to predict embryo developmental outcomes.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Fertilização in vitro , Oócitos , Humanos , Blastocisto/fisiologia , Blastocisto/citologia , Feminino , Oócitos/fisiologia , Oócitos/citologia , Adulto , Fenômenos Biomecânicos , Fertilização in vitro/métodos , Desenvolvimento Embrionário/fisiologia , Estudos Prospectivos
2.
IEEE Trans Biomed Eng ; PP2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683703

RESUMO

OBJECTIVE: Wearable devices are developed to measure head impact kinematics but are intrinsically noisy because of the imperfect interface with human bodies. This study aimed to improve the head impact kinematics measurements obtained from instrumented mouthguards using deep learning to enhance traumatic brain injury (TBI) risk monitoring. METHODS: We developed one-dimensional convolutional neural network (1D-CNN) models to denoise mouthguard kinematics measurements for tri-axial linear acceleration and tri-axial angular velocity from 163 laboratory dummy head impacts. The performance of the denoising models was evaluated on three levels: kinematics, brain injury criteria, and tissue-level strain and strain rate. Additionally, we performed a blind test on an on-field dataset of 118 college football impacts and a test on 413 post-mortem human subject (PMHS) impacts. RESULTS: On the dummy head impacts, the denoised kinematics showed better correlation with reference kinematics, with relative reductions of 36% for pointwise root mean squared error and 56% for peak absolute error. Absolute errors in six brain injury criteria were reduced by a mean of 82%. For maximum principal strain and maximum principal strain rate, the mean error reduction was 35% and 69%, respectively. On the PMHS impacts, similar denoising effects were observed and the peak kinematics after denoising were more accurate (relative error reduction for 10% noisiest impacts was 75.6%). CONCLUSION: The 1D-CNN denoising models effectively reduced errors in mouthguard-derived kinematics measurements on dummy and PMHS impacts. SIGNIFICANCE: This study provides a novel approach for denoising head kinematics measurements in dummy and PMHS impacts, which can be further validated on more real-human kinematics data before real-world applications.

3.
IEEE Trans Biomed Eng ; 71(6): 1853-1863, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38224520

RESUMO

OBJECTIVE: The machine-learning head model (MLHM) to accelerate the calculation of brain strain and strain rate, which are the predictors for traumatic brain injury (TBI), but the model accuracy was found to decrease sharply when the training/test datasets were from different head impacts types (i.e., car crash, college football), which limits the applicability of MLHMs to different types of head impacts and sports. Particularly, small sizes of target dataset for specific impact types with tens of impacts may not be enough to train an accurate impact-type-specific MLHM. METHODS: To overcome this, we propose data fusion and transfer learning to develop a series of MLHMs to predict the maximum principal strain (MPS) and maximum principal strain rate (MPSR). RESULTS: The strategies were tested on American football (338), mixed martial arts (457), reconstructed car crash (48) and reconstructed American football (36) and we found that the MLHMs developed with transfer learning are significantly more accurate in estimating MPS and MPSR than other models, with a mean absolute error (MAE) smaller than 0.03 in predicting MPS and smaller than [Formula: see text] in predicting MPSR on all target impact datasets. High performance in concussion detection was observed based on the MPS and MPSR estimated by the transfer-learning-based models. CONCLUSION: The MLHMs can be applied to various head impact types for rapidly and accurately calculating brain strain and strain rate. SIGNIFICANCE: This study enables developing MLHMs for the head impact type with limited availability of data, and will accelerate the applications of MLHMs.


Assuntos
Encéfalo , Aprendizado de Máquina , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Futebol Americano/lesões , Lesões Encefálicas Traumáticas/fisiopatologia , Cabeça/fisiologia , Acidentes de Trânsito , Fenômenos Biomecânicos/fisiologia , Modelos Biológicos
4.
Biomed Eng Educ ; 3(2): 319-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575216

RESUMO

Many undergraduate educational experiences in biomedical design lack clinical immersion-based needs finding training for students. Convinced of the merits of this type of training for undergraduates, but unable to offer a quarter-long course due to faculty and administrative constraints, we developed an accelerated block-plan course, during which students were dedicated solely to our class for 3 weeks. The course focused on the earliest stages of the health technology innovation process-conducting effective clinical observations and performing comprehensive need research and screening. We grounded the course in experiential learning theory (with hands-on, collaborative, and immersive experiences) and constructivist learning theory (where students integrated prior knowledge with new material on need-driven innovation). This paper describes the design of this intensive block-plan course and the teaching methods intended to support the achievement of five learning objectives. We used pre- and post-course surveys to gather self-reported data about the effect of the course on student learning. Despite the accelerated format, we saw statistically significant gains for all but one sub-measure across the learning objectives. Our experience supports key benefits of the block-plan model, and the results indicate that specific course design choices were effective in achieving positive learning outcomes. These design decisions include (1) opportunities for students to practice observations before entering the clinical setting; (2) a framework for the curriculum that reinforced important concepts iteratively throughout the program; (3) balanced coverage of preparation, clinical immersion, and need research; (4) extensive faculty and peer coaching; and (5) providing hands-on prototyping opportunities while staying focused on need characterization rather than solution development. Based on our experience, we expect that this model is replicable across institutions with limited bandwidth to support clinical immersion opportunities.

5.
Neurology ; 101(9): e953-e965, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37479529

RESUMO

BACKGROUND AND OBJECTIVES: Repeated impacts in high-contact sports such as American football can affect the brain's microstructure, which can be studied using diffusion MRI. Most imaging studies are cross-sectional, do not include low-contact players as controls, or lack advanced tract-specific microstructural metrics. We aimed to investigate longitudinal changes in high-contact collegiate athletes compared with low-contact controls using advanced diffusion MRI and automated fiber quantification. METHODS: We examined brain microstructure in high-contact (football) and low-contact (volleyball) collegiate athletes with up to 4 years of follow-up. Inclusion criteria included university and team enrollment. Exclusion criteria included history of neurosurgery, severe brain injury, and major neurologic or substance abuse disorder. We investigated diffusion metrics along the length of tracts using nested linear mixed-effects models to ascertain the acute and chronic effects of subconcussive and concussive impacts, and associations between diffusion changes with clinical, behavioral, and sports-related measures. RESULTS: Forty-nine football and 24 volleyball players (271 total scans) were included. Football players had significantly divergent trajectories in multiple microstructural metrics and tracts. Longitudinal increases in fractional anisotropy and axonal water fraction, and decreases in radial/mean diffusivity and orientation dispersion index, were present in volleyball but absent in football players (all findings |T-statistic|> 3.5, p value <0.0001). This pattern was present in the callosum forceps minor, superior longitudinal fasciculus, thalamic radiation, and cingulum hippocampus. Longitudinal differences were more prominent and observed in more tracts in concussed football players (n = 24, |T|> 3.6, p < 0.0001). An analysis of immediate postconcussion scans (n = 12) demonstrated a transient localized increase in axial diffusivity and mean/radial kurtosis in the uncinate and cingulum hippocampus (|T| > 3.7, p < 0.0001). Finally, within football players, those with high position-based impact risk demonstrated increased intracellular volume fraction longitudinally (T = 3.6, p < 0.0001). DISCUSSION: The observed longitudinal changes seen in football, and especially concussed athletes, could reveal diminished myelination, altered axonal calibers, or depressed pruning processes leading to a static, nondecreasing axonal dispersion. This prospective longitudinal study demonstrates divergent tract-specific trajectories of brain microstructure, possibly reflecting a concussive and repeated subconcussive impact-related alteration of white matter development in football athletes.


Assuntos
Concussão Encefálica , Futebol Americano , Voleibol , Humanos , Estudos Transversais , Estudos Longitudinais , Estudos Prospectivos , Universidades , Concussão Encefálica/diagnóstico por imagem
6.
ArXiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37332565

RESUMO

Machine learning head models (MLHMs) are developed to estimate brain deformation for early detection of traumatic brain injury (TBI). However, the overfitting to simulated impacts and the lack of generalizability caused by distributional shift of different head impact datasets hinders the broad clinical applications of current MLHMs. We propose brain deformation estimators that integrates unsupervised domain adaptation with a deep neural network to predict whole-brain maximum principal strain (MPS) and MPS rate (MPSR). With 12,780 simulated head impacts, we performed unsupervised domain adaptation on on-field head impacts from 302 college football (CF) impacts and 457 mixed martial arts (MMA) impacts using domain regularized component analysis (DRCA) and cycle-GAN-based methods. The new model improved the MPS/MPSR estimation accuracy, with the DRCA method significantly outperforming other domain adaptation methods in prediction accuracy (p<0.001): MPS RMSE: 0.027 (CF) and 0.037 (MMA); MPSR RMSE: 7.159 (CF) and 13.022 (MMA). On another two hold-out testsets with 195 college football impacts and 260 boxing impacts, the DRCA model significantly outperformed the baseline model without domain adaptation in MPS and MPSR estimation accuracy (p<0.001). The DRCA domain adaptation reduces the MPS/MPSR estimation error to be well below TBI thresholds, enabling accurate brain deformation estimation to detect TBI in future clinical applications.

7.
Ann Neurol ; 94(3): 457-469, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306544

RESUMO

OBJECTIVE: Repetitive head trauma is common in high-contact sports. Cerebral blood flow (CBF) can measure changes in brain perfusion that could indicate injury. Longitudinal studies with a control group are necessary to account for interindividual and developmental effects. We investigated whether exposure to head impacts causes longitudinal CBF changes. METHODS: We prospectively studied 63 American football (high-contact cohort) and 34 volleyball (low-contact controls) male collegiate athletes, tracking CBF using 3D pseudocontinuous arterial spin labeling magnetic resonance imaging for up to 4 years. Regional relative CBF (rCBF, normalized to cerebellar CBF) was computed after co-registering to T1-weighted images. A linear mixed effects model assessed the relationship of rCBF to sport, time, and their interaction. Within football players, we modeled rCBF against position-based head impact risk and baseline Standardized Concussion Assessment Tool score. Additionally, we evaluated early (1-5 days) and delayed (3-6 months) post-concussion rCBF changes (in-study concussion). RESULTS: Supratentorial gray matter rCBF declined in football compared with volleyball (sport-time interaction p = 0.012), with a strong effect in the parietal lobe (p = 0.002). Football players with higher position-based impact-risk had lower occipital rCBF over time (interaction p = 0.005), whereas players with lower baseline Standardized Concussion Assessment Tool score (worse performance) had relatively decreased rCBF in the cingulate-insula over time (interaction effect p = 0.007). Both cohorts showed a left-right rCBF asymmetry that decreased over time. Football players with an in-study concussion showed an early increase in occipital lobe rCBF (p = 0.0166). INTERPRETATION: These results suggest head impacts may result in an early increase in rCBF, but cumulatively a long-term decrease in rCBF. ANN NEUROL 2023;94:457-469.


Assuntos
Concussão Encefálica , Futebol Americano , Humanos , Masculino , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Futebol Americano/lesões , Imageamento por Ressonância Magnética , Circulação Cerebrovascular/fisiologia
8.
Front Bioeng Biotechnol ; 11: 1160387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362208

RESUMO

Introduction: Concern has grown over the potential long-term effects of repeated head impacts and concussions in American football. Recent advances in impact engineering have yielded the development of soft, collapsible, liquid shock absorbers, which have demonstrated the ability to dramatically attenuate impact forces relative to existing helmet shock absorbers. Methods: To further explore how liquid shock absorbers can improve the efficacy of an American football helmet, we developed and optimized a finite element (FE) helmet model including 21 liquid shock absorbers spread out throughout the helmet. Using FE models of an anthropomorphic test headform and linear impactor, a previously published impact test protocol representative of concussive National Football League impacts (six impact locations, three velocities) was performed on the liquid FE helmet model and four existing FE helmet models. We also evaluated the helmets at three lower impact velocities representative of subconcussive football impacts. Head kinematics were recorded for each impact and used to compute the Head Acceleration Response Metric (HARM), a metric factoring in both linear and angular head kinematics and used to evaluate helmet performance. The head kinematics were also input to a FE model of the head and brain to calculate the resulting brain strain from each impact. Results: The liquid helmet model yielded the lowest value of HARM at 33 of the 36 impact conditions, offering an average 33.0% (range: -37.5% to 56.0%) and 32.0% (range: -2.2% to 50.5%) reduction over the existing helmet models at each impact condition in the subconcussive and concussive tests, respectively. The liquid helmet had a Helmet Performance Score (calculated using a summation of HARM values weighted based on injury incidence data) of 0.71, compared to scores ranging from 1.07 - 1.21 from the other four FE helmet models. Resulting brain strains were also lower in the liquid helmet. Discussion: The results of this study demonstrate the promising ability of liquid shock absorbers to improve helmet safety performance and encourage the development of physical prototypes of helmets featuring this technology. The implications of the observed reductions on brain injury risk are discussed.

9.
Ann Biomed Eng ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917295

RESUMO

Protective headgear effects measured in the laboratory may not always translate to the field. In this study, we evaluated the impact attenuation capabilities of a commercially available padded helmet shell cover in the laboratory and on the field. In the laboratory, we evaluated the padded helmet shell cover's efficacy in attenuating impact magnitude across six impact locations and three impact velocities when equipped to three different helmet models. In a preliminary on-field investigation, we used instrumented mouthguards to monitor head impact magnitude in collegiate linebackers during practice sessions while not wearing the padded helmet shell covers (i.e., bare helmets) for one season and whilst wearing the padded helmet shell covers for another season. The addition of the padded helmet shell cover was effective in attenuating the magnitude of angular head accelerations and two brain injury risk metrics (DAMAGE, HARM) across most laboratory impact conditions, but did not significantly attenuate linear head accelerations for all helmets. Overall, HARM values were reduced in laboratory impact tests by an average of 25% at 3.5 m/s (range: 9.7 to 39.6%), 18% at 5.5 m/s (range: - 5.5 to 40.5%), and 10% at 7.4 m/s (range: - 6.0 to 31.0%). However, on the field, no significant differences in any measure of head impact magnitude were observed between the bare helmet impacts and padded helmet impacts. Further laboratory tests were conducted to evaluate the ability of the padded helmet shell cover to maintain its performance after exposure to repeated, successive impacts and across a range of temperatures. This research provides a detailed assessment of padded helmet shell covers and supports the continuation of in vivo helmet research to validate laboratory testing results.

10.
J Sport Health Sci ; 12(5): 619-629, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36921692

RESUMO

BACKGROUND: Traumatic brain injury can be caused by head impacts, but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo, and the characteristics of different types of impacts are not well studied. We investigated the spectral characteristics of different head impact types with kinematics classification. METHODS: Data were analyzed from 3262 head impacts from lab reconstruction, American football, mixed martial arts, and publicly available car crash data. A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types (e.g., football, car crash, mixed martial arts). To test the classifier robustness, another 271 lab-reconstructed impacts were obtained from 5 other instrumented mouthguards. Finally, with the classifier, type-specific, nearest-neighbor regression models were built for brain strain. RESULTS: The classifier reached a median accuracy of 96% over 1000 random partitions of training and test sets. The most important features in the classification included both low- and high-frequency features, both linear acceleration features and angular velocity features. Different head impact types had different distributions of spectral densities in low- and high-frequency ranges (e.g., the spectral densities of mixed martial arts impacts were higher in the high-frequency range than in the low-frequency range). The type-specific regression showed a generally higher R2 value than baseline models without classification. CONCLUSION: The machine-learning-based classifier enables a better understanding of the impact kinematics spectral density in different sports, and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation.


Assuntos
Lesões Encefálicas Traumáticas , Aprendizado de Máquina , Humanos , Fenômenos Biomecânicos , Cabeça , Protetores Bucais
12.
Ann Biomed Eng ; 50(11): 1596-1607, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35922726

RESUMO

In a previous study, we found that the relationship between brain strain and kinematic features cannot be described by a generalized linear model across different types of head impacts. In this study, we investigate if such a linear relationship exists when partitioning head impacts using a data-driven approach. We applied the K-means clustering method to partition 3161 impacts from various sources including simulation, college football, mixed martial arts, and car crashes. We found piecewise multivariate linearity between the cumulative strain damage (CSDM; assessed at the threshold of 0.15) and head kinematic features. Compared with the linear regression models without partition and the partition according to the types of head impacts, K-means-based data-driven partition showed significantly higher CSDM regression accuracy, which suggested the presence of piecewise multivariate linearity across types of head impacts. Additionally, we compared the piecewise linearity with the partitions based on individual features used in clustering. We found that the partition with maximum angular acceleration magnitude at 4706 rad/s2 led to the highest piecewise linearity. This study may contribute to an improved method for the rapid prediction of CSDM in the future.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Futebol Americano , Humanos , Fenômenos Biomecânicos , Aceleração , Simulação por Computador , Cabeça
13.
Front Bioeng Biotechnol ; 10: 754344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392406

RESUMO

Hippocampal injury is common in traumatic brain injury (TBI) patients, but the underlying pathogenesis remains elusive. In this study, we hypothesize that the presence of the adjacent fluid-containing temporal horn exacerbates the biomechanical vulnerability of the hippocampus. Two finite element models of the human head were used to investigate this hypothesis, one with and one without the temporal horn, and both including a detailed hippocampal subfield delineation. A fluid-structure interaction coupling approach was used to simulate the brain-ventricle interface, in which the intraventricular cerebrospinal fluid was represented by an arbitrary Lagrangian-Eulerian multi-material formation to account for its fluid behavior. By comparing the response of these two models under identical loadings, the model that included the temporal horn predicted increased magnitudes of strain and strain rate in the hippocampus with respect to its counterpart without the temporal horn. This specifically affected cornu ammonis (CA) 1 (CA1), CA2/3, hippocampal tail, subiculum, and the adjacent amygdala and ventral diencephalon. These computational results suggest that the presence of the temporal horn exacerbate the vulnerability of the hippocampus, highlighting the mechanobiological dependency of the hippocampus on the temporal horn.

14.
PLoS One ; 17(3): e0266173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35353851

RESUMO

Respiratory failure complicates most critically ill patients with COVID-19 and is characterized by heterogeneous pulmonary parenchymal involvement, profound hypoxemia and pulmonary vascular injury. The high incidence of COVID-19 related respiratory failure has exposed critical shortages in the supply of mechanical ventilators, and providers with the necessary skills to treat. Traditional mass-produced ventilators rely on an internal compressor and mixer to moderate and control the gas mixture delivered to a patient. However, the current emergency has energized the pursuit of alternative designs, enabling greater flexibility in supply chain, manufacturing, storage, and maintenance considerations. To achieve this, we hypothesized that using the medical gasses and flow interruption strategy would allow for a high performance, low cost, functional ventilator. A low-cost ventilator designed and built-in accordance with the Emergency Use guidance from the US Food and Drug Administration (FDA) is presented wherein pressurized medical grade gases enter the ventilator and time limited flow interruption determines the ventilator rate and tidal volume. This simple strategy obviates the need for many components needed in traditional ventilators, thereby dramatically shortening the time from storage to clinical deployment, increasing reliability, while still providing life-saving ventilatory support. The overall design philosophy and its applicability in this new crisis is described, followed by both bench top and animal testing results used to confirm the precision, safety and reliability of this low cost and novel approach to mechanical ventilation. The ventilator meets and exceeds the critical requirements included in the FDA emergency use guidelines. The ventilator has received emergency use authorization from the FDA.


Assuntos
COVID-19 , Insuficiência Respiratória , Animais , COVID-19/terapia , Humanos , Reprodutibilidade dos Testes , Insuficiência Respiratória/terapia , Ventiladores Mecânicos
15.
IEEE Trans Biomed Eng ; 69(10): 3205-3215, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35349430

RESUMO

OBJECTIVE: Strain and strain rate are effective traumatic brain injury metrics. In finite element (FE) head model, thousands of elements were used to represent the spatial distribution of these metrics. Owing that these metrics are resulted from brain inertia, their spatial distribution can be represented in more concise pattern. Since head kinematic features and brain deformation vary largely across head impact types (Zhan et al., 2021), we applied principal component analysis (PCA) to find the spatial co-variation of injury metrics (maximum principal strain (MPS), MPS rate (MPSR) and MPS × MPSR) in four impact types: simulation, football, mixed martial arts and car crashes, and used the PCA to find patterns in these metrics and improve the machine learning head model (MLHM). METHODS: We applied PCA to decompose the injury metrics for all impacts in each impact type, and investigate the spatial co-variation using the first principal component (PC1). Furthermore, we developed a MLHM to predict PC1 and then inverse-transform to predict for all brain elements. The accuracy, the model complexity and the size of training dataset of PCA-MLHM are compared with previous MLHM (Zhan et al., 2021). RESULTS: PC1 explained variance on the datasets. Based on PC1 coefficients, the corpus callosum and midbrain exhibit high variance on all datasets. Finally, the PCA-MLHM reduced model parameters by 74% with a similar MPS estimation accuracy. CONCLUSION: The brain injury metric in a dataset can be decomposed into mean components and PC1 with high explained variance. SIGNIFICANCE: The spatial co-variation analysis enables better interpretation of the patterns in brain injury metrics. It also improves the efficiency of MLHM.


Assuntos
Lesões Encefálicas , Cabeça , Fenômenos Biomecânicos , Encéfalo/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Análise de Componente Principal
16.
Ann Biomed Eng ; 50(11): 1534-1545, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35303171

RESUMO

In this work we present a new physics-informed machine learning model that can be used to analyze kinematic data from an instrumented mouthguard and detect impacts to the head. Monitoring player impacts is vitally important to understanding and protecting from injuries like concussion. Typically, to analyze this data, a combination of video analysis and sensor data is used to ascertain the recorded events are true impacts and not false positives. In fact, due to the nature of using wearable devices in sports, false positives vastly outnumber the true positives. Yet, manual video analysis is time-consuming. This imbalance leads traditional machine learning approaches to exhibit poor performance in both detecting true positives and preventing false negatives. Here, we show that by simulating head impacts numerically using a standard Finite Element head-neck model, a large dataset of synthetic impacts can be created to augment the gathered, verified, impact data from mouthguards. This combined physics-informed machine learning impact detector reported improved performance on test datasets compared to traditional impact detectors with negative predictive value and positive predictive values of 88 and 87% respectively. Consequently, this model reported the best results to date for an impact detection algorithm for American football, achieving an F1 score of 0.95. In addition, this physics-informed machine learning impact detector was able to accurately detect true and false impacts from a test dataset at a rate of 90% and 100% relative to a purely manual video analysis workflow. Saving over 12 h of manual video analysis for a modest dataset, at an overall accuracy of 92%, these results indicate that this model could be used in place of, or alongside, traditional video analysis to allow for larger scale and more efficient impact detection in sports such as American Football.


Assuntos
Concussão Encefálica , Futebol Americano , Protetores Bucais , Humanos , Concussão Encefálica/diagnóstico , Futebol Americano/lesões , Dispositivos de Proteção da Cabeça , Cabeça , Fenômenos Biomecânicos , Aprendizado de Máquina , Física , Aceleração
17.
J Neurotrauma ; 38(23): 3260-3278, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617451

RESUMO

Finite element (FE) models of the human head are valuable instruments to explore the mechanobiological pathway from external loading, localized brain response, and resultant injury risks. The injury predictability of these models depends on the use of effective criteria as injury predictors. The FE-derived normal deformation along white matter (WM) fiber tracts (i.e., tract-oriented strain) recently has been suggested as an appropriate predictor for axonal injury. However, the tract-oriented strain only represents a partial depiction of the WM fiber tract deformation. A comprehensive delineation of tract-related deformation may improve the injury predictability of the FE head model by delivering new tract-related criteria as injury predictors. Thus, the present study performed a theoretical strain analysis to comprehensively characterize the WM fiber tract deformation by relating the strain tensor of the WM element to its embedded fiber tract. Three new tract-related strains with exact analytical solutions were proposed, measuring the normal deformation perpendicular to the fiber tracts (i.e., tract-perpendicular strain), and shear deformation along and perpendicular to the fiber tracts (i.e., axial-shear strain and lateral-shear strain, respectively). The injury predictability of these three newly proposed strain peaks along with the previously used tract-oriented strain peak and maximum principal strain (MPS) were evaluated by simulating 151 impacts with known outcome (concussion or non-concussion). The results preliminarily showed that four tract-related strain peaks exhibited superior performance than MPS in discriminating concussion and non-concussion cases. This study presents a comprehensive quantification of WM tract-related deformation and advocates the use of orientation-dependent strains as criteria for injury prediction, which may ultimately contribute to an advanced mechanobiological understanding and enhanced computational predictability of brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Teóricos , Fibras Nervosas Mielinizadas/patologia , Substância Branca/patologia , Concussão Encefálica/diagnóstico , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/patologia , Lesão Axonal Difusa/diagnóstico , Lesão Axonal Difusa/patologia , Humanos
18.
Ann Biomed Eng ; 49(10): 2814-2826, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34549342

RESUMO

Repeated head impact exposure and concussions are common in American football. Identifying the factors associated with high magnitude impacts aids in informing sport policy changes, improvements to protective equipment, and better understanding of the brain's response to mechanical loading. Recently, the Stanford Instrumented Mouthguard (MiG2.0) has seen several improvements in its accuracy in measuring head kinematics and its ability to correctly differentiate between true head impact events and false positives. Using this device, the present study sought to identify factors (e.g., player position, helmet model, direction of head acceleration, etc.) that are associated with head impact kinematics and brain strain in high school American football athletes. 116 athletes were monitored over a total of 888 athlete exposures. 602 total impacts were captured and verified by the MiG2.0's validated impact detection algorithm. Peak values of linear acceleration, angular velocity, and angular acceleration were obtained from the mouthguard kinematics. The kinematics were also entered into a previously developed finite element model of the human brain to compute the 95th percentile maximum principal strain. Overall, impacts were (mean ± SD) 34.0 ± 24.3 g for peak linear acceleration, 22.2 ± 15.4 rad/s for peak angular velocity, 2979.4 ± 3030.4 rad/s2 for peak angular acceleration, and 0.262 ± 0.241 for 95th percentile maximum principal strain. Statistical analyses revealed that impacts resulting in Forward head accelerations had higher magnitudes of peak kinematics and brain strain than Lateral or Rearward impacts and that athletes in skill positions sustained impacts of greater magnitude than athletes in line positions. 95th percentile maximum principal strain was significantly lower in the observed cohort of high school football athletes than previous reports of collegiate football athletes. No differences in impact magnitude were observed in athletes with or without previous concussion history, in athletes wearing different helmet models, or in junior varsity or varsity athletes. This study presents novel information on head acceleration events and their resulting brain strain in high school American football from our advanced, validated method of measuring head kinematics via instrumented mouthguard technology.


Assuntos
Traumatismos em Atletas/fisiopatologia , Encéfalo/fisiologia , Traumatismos Craniocerebrais/fisiopatologia , Protetores Bucais , Equipamentos Esportivos , Telemetria/instrumentação , Adolescente , Fenômenos Biomecânicos , Futebol Americano , Cabeça , Humanos , Masculino , Instituições Acadêmicas , Estados Unidos , Dispositivos Eletrônicos Vestíveis
19.
Front Neurol ; 12: 701948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456852

RESUMO

Background and Purpose: Athletes participating in high-contact sports experience repeated head trauma. Anatomical findings, such as a cavum septum pellucidum, prominent CSF spaces, and hippocampal volume reductions, have been observed in cases of mild traumatic brain injury. The extent to which these neuroanatomical findings are associated with high-contact sports is unknown. The purpose of this study was to determine whether there are subtle neuroanatomic differences between athletes participating in high-contact sports compared to low-contact athletic controls. Materials and Methods: We performed longitudinal structural brain MRI scans in 63 football (high-contact) and 34 volleyball (low-contact control) male collegiate athletes with up to 4 years of follow-up, evaluating a total of 315 MRI scans. Board-certified neuroradiologists performed semi-quantitative visual analysis of neuroanatomic findings, including: cavum septum pellucidum type and size, extent of perivascular spaces, prominence of CSF spaces, white matter hyperintensities, arterial spin labeling perfusion asymmetries, fractional anisotropy holes, and hippocampal size. Results: At baseline, cavum septum pellucidum length was greater in football compared to volleyball controls (p = 0.02). All other comparisons were statistically equivalent after multiple comparison correction. Within football at baseline, the following trends that did not survive multiple comparison correction were observed: more years of prior football exposure exhibited a trend toward more perivascular spaces (p = 0.03 uncorrected), and lower baseline Standardized Concussion Assessment Tool scores toward more perivascular spaces (p = 0.02 uncorrected) and a smaller right hippocampal size (p = 0.02 uncorrected). Conclusion: Head impacts in high-contact sport (football) athletes may be associated with increased cavum septum pellucidum length compared to low-contact sport (volleyball) athletic controls. Other investigated neuroradiology metrics were generally equivalent between sports.

20.
Ann Biomed Eng ; 49(10): 2901-2913, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34244908

RESUMO

Brain tissue deformation resulting from head impacts is primarily caused by rotation and can lead to traumatic brain injury. To quantify brain injury risk based on measurements of kinematics on the head, finite element (FE) models and various brain injury criteria based on different factors of these kinematics have been developed, but the contribution of different kinematic factors has not been comprehensively analyzed across different types of head impacts in a data-driven manner. To better design brain injury criteria, the predictive power of rotational kinematics factors, which are different in (1) the derivative order (angular velocity, angular acceleration, angular jerk), (2) the direction and (3) the power (e.g., square-rooted, squared, cubic) of the angular velocity, were analyzed based on different datasets including laboratory impacts, American football, mixed martial arts (MMA), NHTSA automobile crashworthiness tests and NASCAR crash events. Ordinary least squares regressions were built from kinematics factors to the 95% maximum principal strain (MPS95), and we compared zero-order correlation coefficients, structure coefficients, commonality analysis, and dominance analysis. The angular acceleration, the magnitude and the first power factors showed the highest predictive power for the majority of impacts including laboratory impacts, American football impacts, with few exceptions (angular velocity for MMA and NASCAR impacts). The predictive power of rotational kinematics about three directions (x: posterior-to-anterior, y: left-to-right, z: superior-to-inferior) of kinematics varied with different sports and types of head impacts.


Assuntos
Acidentes de Trânsito , Lesões Encefálicas Traumáticas/fisiopatologia , Futebol Americano/lesões , Artes Marciais/lesões , Modelos Estatísticos , Aceleração , Automóveis , Fenômenos Biomecânicos , Interpretação Estatística de Dados , Cabeça , Humanos , Protetores Bucais , Análise de Regressão , Rotação , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...