RESUMO
Atrial natriuretic peptide (ANP), a cardiac hormone involved in the regulation of water/sodium balance and blood pressure, is also secreted by endothelial cells, where it exerts protective effects in response to stress. Autophagy is an intracellular self-renewal process involved in the degradation of dysfunctional cytoplasmic elements. ANP was recently reported to act as an extracellular regulator of cardiac autophagy. However, its role in the regulation of endothelial autophagy has never been investigated. Here, we tested the effects of ANP in the regulation of autophagy in human umbilical vein endothelial cells (HUVECs). We found that ANP rapidly increases autophagy and autophagic flux at physiological concentrations through its predominant pathway, mediated by natriuretic peptide receptor type A (NPR-A) and protein kinase G (PKG). We further observed that ANP is rapidly secreted by HUVEC under stress conditions, where it mediates stress-induced autophagy through autocrine and paracrine mechanisms. Finally, we found that the protective effects of ANP in response to high-salt loading or tumor necrosis factor (TNF)-α are blunted by concomitant inhibition of autophagy. Overall, our results suggest that ANP acts as an endogenous autophagy activator in endothelial cells. The autophagy mechanism mediates the protective endothelial effects exerted by ANP.
RESUMO
BACKGROUND: Oxidative stress and inflammation are typically implied in atherosclerosis pathogenesis and progression, especially in coronary artery disease (CAD). Our objective was to investigate the oxidative stress and inflammation burden directly associated with atherosclerotic plaque in patients with stable coronary disease undergoing coronary artery bypass graft (CABG) surgery. Specifically, markers of oxidative stress and inflammation were compared in blood samples obtained from the atherosclerotic left anterior descending artery (LAD) and blood samples obtained from the healthy left internal thoracic artery (LITA), used as a bypass graft, within the same patient. METHODS: Twenty patients scheduled for off-pump CABG were enrolled. Blood samples were collected from the LITA below anastomosis and the LAD below the stenosis. Samples were analysed for oxidative stress (sNOXdp, H2O2, NO) and inflammation markers (TNFα, IL-6, IL-1ß, IL-10). RESULTS: The analysis showed a significant increase in oxidative stress burden in the LAD as compared to LITA, as indicated by higher sNOX2-dp and H2O2 levels and lower NO levels (p < 0.01). Also, pro-inflammatory cytokines were increased in the LAD as compared to the LITA, as indicated by higher TNFα and IL-6 amounts (p < 0.01). On the other hand, no significant differences could be seen regarding IL-1ß and IL-10 levels between the two groups. CONCLUSIONS: The oxidative stress and inflammatory burden are specifically enhanced in the LAD artery of stable coronary patients compared to systemic blood from the LITA of stable coronary patients.
RESUMO
BACKGROUND: Albumin has antiplatelet and anticoagulant functions. Hypoalbuminemia, as defined by serum values of <3.5 g/dL, is associated with arterial thrombosis; its impact on venous thromboembolism (VTE) is unclear. OBJECTIVES: The objective of this meta-analysis is to assess the VTE risk in patients with hypoalbuminemia. METHODS: MEDLINE and EMBASE were searched up to January 2024 for observational studies and randomized trials reporting data of interest. Primary outcome was the risk of VTE, while secondary outcomes were myocardial infarction and stroke risk in patients with hypoalbuminemia versus those without hypoalbuminemia. The risk of bias was evaluated using Newcastle-Ottawa scale and Cochrane tool. Risk ratios (RRs) with 95% confidence intervals (CIs) were calculated in a random-effects model. RESULTS: Forty-three studies for a total of 2 531 091 patients (39 738 medical and 2 491 353 surgical) were included in primary analysis; 79.1% of the studies used 3.5 g/dL cut-off value for hypoalbuminemia definition. Follow-up duration was 30 days in 60.5% of studies. Patients with hypoalbuminemia had a higher risk of VTE (RR, 1.88; 95% CI, 1.66-2.13). RRs were similar in both medical (RR, 1.87; 95% CI, 1.53-2.27) and surgical patients (RR, 1.87; 95% CI, 1.61-2.16) and in patients with (RR, 1.86; 95% CI, 1.66-2.10) and without cancer (RR, 1.89; 95% CI, 1.47-2.44). Risk of myocardial infarction (RR, 1.88; 95% CI, 1.54-2.31) and stroke (RR, 1.77; 95% CI, 1.26-2.48) was higher in patients with hypoalbuminemia. CONCLUSION: Hypoalbuminemia is a risk factor for VTE in both medical and surgical patients irrespective of cancer coexistence. Serum albumin analysis may represent a simple and cheap tool to identify patients at VTE risk.
Assuntos
Hipoalbuminemia , Tromboembolia Venosa , Humanos , Biomarcadores/sangue , Hipoalbuminemia/sangue , Hipoalbuminemia/complicações , Infarto do Miocárdio/sangue , Infarto do Miocárdio/epidemiologia , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/epidemiologia , Tromboembolia Venosa/sangue , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/etiologiaRESUMO
Heart failure with reduced ejection fraction (HFrEF) represents an emerging epidemic, particularly affecting frail, older, and multimorbid patients. Current therapy for the management of HFrEF includes four different classes of disease-modifying drugs, commonly referred to as 'four pillars', which target the neurohormonal system that is overactivated in HF and contributes to its progression. These classes of drugs include ß-blockers, inhibitors of the renin-angiotensin-aldosterone system, mineralocorticoid receptor antagonists, and sodium-glucose co-transporter-2 (SGLT2) inhibitors. Unfortunately, these agents cannot be administered as frequently as needed to older patients because of poor tolerability and comorbidities. In addition, although these drugs have dramatically increased the survival expectations of patients with HF, their residual risk of rehospitalization and death at 5 years remains considerable. Vericiguat, a soluble guanylate cyclase (sGC) stimulator, was reported to exert beneficial effects in patients with worsening HF, including older subjects, reducing the rate of both hospitalizations and deaths, with limited adverse effects and drug interaction. In this narrative review, we present the current state of art on vericiguat, with a particular focus on elderly and frail patients.
Assuntos
Insuficiência Cardíaca , Volume Sistólico , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico/efeitos dos fármacos , Idoso , Pirimidinas/uso terapêutico , Pirimidinas/efeitos adversos , Pirimidinas/farmacologia , Compostos Heterocíclicos com 2 AnéisRESUMO
Gut-dysbiosis-induced lipopolysaccharides (LPS) translocation into systemic circulation has been suggested to be implicated in nonalcoholic fatty liver disease (NAFLD) pathogenesis. This study aimed to assess if oleuropein (OLE), a component of extra virgin olive oil, lowers high-fat-diet (HFD)-induced endotoxemia and, eventually, liver steatosis. An immunohistochemistry analysis of the intestine and liver was performed in (i) control mice (CTR; n = 15), (ii) high-fat-diet fed (HFD) mice (HFD; n = 16), and (iii) HFD mice treated with 6 µg/day of OLE for 30 days (HFD + OLE, n = 13). The HFD mice developed significant liver steatosis compared to the controls, an effect that was significantly reduced in the HFD + OLE-treated mice. The amount of hepatocyte LPS localization and the number of TLR4+ macrophages were higher in the HFD mice in the than controls and were lowered in the HFD + OLE-treated mice. The number of CD42b+ platelets was increased in the liver sinusoids of the HFD mice compared to the controls and decreased in the HFD + OLE-treated mice. Compared to the controls, the HFD-treated mice showed a high percentage of intestine PAS+ goblet cells, an increased length of intestinal crypts, LPS localization and TLR4+ expression, and occludin downregulation, an effect counteracted in the HFD + OLE-treated mice. The HFD-fed animals displayed increased systemic levels of LPS and zonulin, but they were reduced in the HFD + OLE-treated animals. It can be seen that OLE administration improves liver steatosis and inflammation in association with decreased LPS translocation into the systemic circulation, hepatocyte localization of LPS and TLR4 downregulation in HFD-induced mouse model of NAFLD.
Assuntos
Glucosídeos Iridoides , Iridoides , Lipopolissacarídeos , Hepatopatia Gordurosa não Alcoólica , Azeite de Oliva , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Glucosídeos Iridoides/farmacologia , Camundongos , Azeite de Oliva/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Masculino , Iridoides/farmacologia , Regulação para Baixo/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologiaRESUMO
BACKGROUND: Cortisol levels, oxidative stress, and lower cerebral performance seem to be closely related. This study aimed to evaluate the question of whether exam stress affected oxidative stress and endothelial function parameters in the salivary samples of students. METHODS: A total of 114 healthy students were recruited. All students were subjected to a 21-item DASS questionnaire to assess perceived stress. Cortisol levels, biomarkers of oxidative stress, and endothelial function were evaluated at T0, during the semester, and T1, in the morning before the exam, in saliva samples. In vitro, HUVECs were stimulated with cortisol, and oxidative stress and endothelial function parameters were evaluated. RESULTS: At T1, cortisol levels were significantly increased compared with the levels during the semester. Moreover, exam results correlated inversely with the DASS score at T1. In addition, NOX2, H2O2 and endothelin-1 significantly increased, while NO bioavailability decreased. In vitro, HUVECs treatment with human cortisol determined the increase of oxidative stress and the decrease of endothelial function, in association with impaired eNOS phosphorylation. CONCLUSION: NOX2-mediated oxidative stress is a mechanism that could mediate cortisol-induced transient endothelial dysfunction during academic examination. Therefore, strategies to monitor or modulate oxidative stress could help students to reduce the impact of examination-related stress.
RESUMO
Gut dysbiosis-related intestinal barrier dysfunction with increased translocation of bacterial products such as lipopolysaccharide (LPS) into systemic circulation is emerging as pathogenic factor of nonalcoholic fatty liver disease (NAFLD). Experimental and clinical studies suggested a potential role of LPS as a trigger eliciting in situ liver inflammation upon interaction with its receptor toll-like receptor 4. Also, LPS has been reported to prime platelets to respond to the common agonists indicating that it behaves as a prothrombotic molecule. Of note, recent studies suggested platelet-related intrahepatic thrombosis triggered by LPS as a mechanism implicated in the process of liver inflammation. This review describes: 1) the impact of gut barrier dysfunction and endotoxemia in the process of NAFLD; 2) the relationship between endotoxemia and platelet activation in NAFLD; 3) clinical evidence for the use of antiplatelet drugs in NAFLD/nonalcoholic steatohepatitis patients; and 4) the potential therapeutic approach to modulate endotoxemia and eventually platelet activation.
RESUMO
Pathophysiology of portal vein thrombosis (PVT) in cirrhosis is still not entirely understood. Elevated levels of lipopolysaccharides (LPS) in portal circulation are significantly associated with hypercoagulation, increased platelet activation and endothelial dysfunction. The aim of the study was to investigate if LPS was associated with reduced portal venous flow, the third component of Virchow's triad, and the underlying mechanism. Serum nitrite/nitrate, as a marker of nitric oxide (NO) generation, and LPS were measured in the portal and systemic circulation of 20 patients with cirrhosis undergoing transjugular intrahepatic portosystemic shunt (TIPS) procedure; portal venous flow velocity (PVV) was also measured in each patient and correlated with NO and LPS levels. Serum nitrite/nitrate and LPS were significantly higher in the portal compared to systemic circulation; a significant correlation was found between LPS and serum nitrite/nitrate (R = 0.421; p < 0.01). Median PVV before and after TIPS was 15 cm/s (6-40) and 31 cm/s (14-79), respectively. Correlation analysis of PVV with NO and LPS showed a statistically significant negative correlation of PVV with portal venous NO concentration (R = - 0.576; p = 0.020), but not with LPS. In vitro study with endothelial cells showed that LPS enhanced endothelial NO biosynthesis, which was inhibited by L-NAME, an inhibitor of NO synthase, or TAK-242, an inhibitor of TLR4, the LPS receptor; this effect was accomplished by up-regulation of eNOS and iNOS. The study shows that in cirrhosis, endotoxemia may be responsible for reduced portal venous flow via overgeneration of NO and, therefore, contribute to the development of PVT.
Assuntos
Endotoxemia , Cirrose Hepática , Óxido Nítrico , Veia Porta , Humanos , Masculino , Feminino , Cirrose Hepática/complicações , Cirrose Hepática/sangue , Cirrose Hepática/fisiopatologia , Projetos Piloto , Endotoxemia/fisiopatologia , Endotoxemia/sangue , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Óxido Nítrico/análise , Veia Porta/fisiopatologia , Idoso , Adulto , Lipopolissacarídeos/farmacologia , Derivação Portossistêmica Transjugular Intra-HepáticaRESUMO
Growing global use of heat-not-burn cigarettes (HNBC) prompts investigation. Prior studies assessed HNBC's effects on cardiovascular health, revealing heightened oxidative stress, platelet activation, and endothelial dysfunction. However, limited understanding exists regarding passive smoking's impact on children exposed to HNBC. This study aims to assess levels of oxidative stress, endothelial and platelet function among children exposed to passive smoke from HNBC, traditional tobacco (TT) cigarettes and unexposed subjects. Seventy-eight children (2-18 years) were divided into three groups: HNBC passive smokers (n = 26), TT cigarette exposed (n = 26), and control (CNT) group (n = 26, unexposed). Oxidative stress was evaluated by serum NADPH oxidase-2 (NOX2) activity, assessed by soluble Nox2-derived peptide (sNOX2-dp), isoprostanes, hydrogen peroxide (H2O2) production, hydrogen break-down activity (HBA) and NO bioavailability. Endothelial function was assessed by brachial flow-mediated dilation (FMD). Platelet function was evaluated by soluble CD40 ligand (sCD40L), soluble P-selectin (sP-selectin) and thrombus formation by T-TAS analysis. Passive smoking-exposed children (both HNBC and TT) exhibited significantly increased serum sNOX2-dp, isoprostanes, H2O2, sCD40L sP-selectin and thrombus formation versus controls. Conversely, exposed children displayed reduced brachial FMD and serum NO bioavailability. No significant differences were found between children exposed to passive smoking of HNBC vs TT. Multivariable regression linked sNOX2 (standardized coefficient ß: 0.284; SE: 0.040; p = 0.01) and H2O2 (standardized coefficient ß: 0.243; SE: 0.0; p = 0.02) as independent predictors of FMD, and isoprostanes (standardized coefficient ß:0.388; SE: 0.022; p < 0.001) and serum cotinine (standardized coefficient ß:0.270; SE: 0.048; p = 0.01) with sNOX2-dp levels. Exposure to HNBC smoke heightened oxidative stress, endothelial dysfunction, platelet activation, and thrombus formation in children. Findings suggest avenues for interventions to curb childhood passive smoking exposure.
Assuntos
Trombose , Produtos do Tabaco , Poluição por Fumaça de Tabaco , Criança , Humanos , Poluição por Fumaça de Tabaco/efeitos adversos , Peróxido de Hidrogênio , Temperatura Alta , Estresse Oxidativo/fisiologia , IsoprostanosRESUMO
Coronavirus infectious disease-19 (COVID-19) is a pandemic characterized by serious lung disease and thrombotic events in the venous and circulation trees, which represent a harmful clinical sign of poor outcome. Thrombotic events are more frequent in patients with severe disease requiring intensive care units and are associated with platelet and clotting activation. However, after resolution of acute infection, patients may still have clinical sequelae, the so-called long-COVID-19, including thrombotic events again in the venous and arterial circulation. The mechanisms accounting for thrombosis in acute and long COVID-19 have not been fully clarified; interactions of COVID-19 with angiotensin converting enzyme 2 or toll-like receptor family or infection-induced cytokine storm have been suggested to be implicated in endothelial cells, leucocytes, and platelets to elicit clotting activation in acute as well in chronic phase of the disease. In acute COVID-19, prophylactic or full doses of anticoagulants exert beneficial effects even if the dosage choice is still under investigation; however, a residual risk still remains suggesting a need for a more appropriate therapeutic approach. In long COVID-19 preliminary data provided useful information in terms of antiplatelet treatment but definition of candidates for thrombotic prophylaxis is still undefined.
Assuntos
COVID-19 , Doenças Transmissíveis , Trombose , Humanos , Síndrome de COVID-19 Pós-Aguda , Células Endoteliais , SARS-CoV-2 , Anticoagulantes/uso terapêutico , Trombose/tratamento farmacológicoRESUMO
INTRODUCTION: Low-grade endotoxemia is associated with systemic inflammation, enhanced oxidative stress and cardiovascular events in different clinical settings, but its possible role as "second hit" in patients with primary antiphospholipid syndrome (PAPS) has never been investigated. PURPOSE: To evaluate the relationship between plasma lipopolysaccharide (LPS) levels, oxidative stress markers and risk of thrombosis in the prospective multicenter ATHERO-APS study. METHODS: Baseline LPS, soluble NADPH-oxidase 2-derived peptide (sNOX-dp), H2O2 production, hydrogen peroxide breakdown activity (HBA), and nitric oxide (NO) bioavailability were compared in 97 PAPS, 16 non-thrombotic aPL carriers and 21 controls (CTRL) matched for age and sex. Correlations among laboratory variables were explored by Rho Spearman's correlation (rS). Cox-regression analysis was performed to assess the association between LPS and risk for a composite outcome of cardiovascular death, venous and arterial thromboembolism. RESULTS: In the whole cohort (median age 51 years (IQR 43-60), 72 % female), PAPS demonstrated higher levels of LPS, sNOX-dp and H2O2 and lower levels of NO and HBA compared to non-thrombotic aPL carriers and CTRL. LPS levels were inversely correlated with HBA (rS: -0.295, p = 0.001) and NO (rS: -0.322, p < 0.001) and directly correlated with sNOX-dp (rS:0.469, p < 0.001) and H202 (rS:0.282, p < 0.001). PAPS showed higher levels of LPS, sNOX-dp and H2O2 and lower levels of NO and HBA compared to aPL carriers and CTRL. After a 4.7 years follow-up of, 11 composite outcomes were reported in PAPS (2.5 per 100 patient-years) while none was observed in aPL carriers. On Cox-regression analysis, patients with LPS above the median (>23.1 pg/ml) had a 5-fold increased risk of composite outcome compared to those with LPS below the median, after adjustment for sex, age, diabetes, and global antiphospholipid syndrome score. CONCLUSION: Low-grade endotoxemia is associated with an increased oxidative stress and a higher risk of thrombosis in PAPS. Its prognostic value in carriers needs to be investigated in larger cohorts.
Assuntos
Síndrome Antifosfolipídica , Endotoxemia , Trombose , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Síndrome Antifosfolipídica/complicações , Estudos Prospectivos , Endotoxemia/complicações , Lipopolissacarídeos , Peróxido de HidrogênioRESUMO
Gut barrier disruption can lead to enhanced intestinal permeability, which allows endotoxins, pathogens, and other proinflammatory substances to move through the intestinal barrier into circulation. Intense exercise over a prolonged period increases intestinal permeability, which can be further worsened by the increased production of reactive oxygen species (ROS) and pro-inflammatory cytokines. The aim of this study was to assess the degree of intestinal permeability in elite football players and to exploit the effect of cocoa polyphenols on intestinal permeability induced by intensive physical exercise. Biomarkers of intestinal permeability, such as circulating levels of zonulin, a modulator of tight junctions, occludin, a tight junction protein, and LPS translocation, were evaluated in 24 elite football players and 23 amateur athletes. Moreover, 24 elite football players were randomly assigned to either a dark chocolate (>85% cocoa) intake (n = 12) or a control group (n = 12) for 30 days in a randomized controlled trial. Biochemical analyses were performed at baseline and after 30 days of chocolate intake. Compared to amateur athletes, elite football players showed increased intestinal permeability as indicated by higher levels of zonulin, occludin, and LPS. After 30 days of dark chocolate intake, decreased intestinal permeability was found in elite athletes consuming dark chocolate. In the control group, no changes were observed. In vitro, polyphenol extracts significantly improved intestinal damage in the human intestinal mucosa cell line Caco-2. These results indicate that chronic supplementation with dark chocolate as a rich source of polyphenols positively modulates exercise-induced intestinal damage in elite football athletes.
Assuntos
Cacau , Chocolate , Futebol Americano , Humanos , Células CACO-2 , Ocludina/metabolismo , Lipopolissacarídeos/farmacologia , Polifenóis/farmacologia , Polifenóis/metabolismo , Mucosa Intestinal/metabolismo , Atletas , Permeabilidade , Junções Íntimas/metabolismoRESUMO
BACKGROUND: Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare syndrome characterized by platelet anti-PF4 (platelet-activating antiplatelet factor 4)-related thrombosis. Platelet-neutrophil interaction has been suggested to play a role, but the underlying mechanism has not been fully elucidated. METHODS: The study included 10 patients with VITT after ChAdOx1 (chimpanzee adenovirus Oxford 1) nCoV-19 (Oxford-AstraZeneca) vaccine administration, 10 patients with ischemic stroke (IS), 10 patients with acute deep vein thrombosis, and 10 control subjects in whom blood levels of neutrophil extracellular traps (NETs), soluble TF (tissue factor), and thrombin generation were examined. Furthermore, we performed in vitro studies comparing the effect of serum from patients and controls on NETs formation. Finally, immunohistochemistry was performed in cerebral thrombi retrieved from a patients with VITT and 3 patients with IS. RESULTS: Compared with patients with IS, patients with deep vein thrombosis, controls, and patients with VITT had significantly higher blood values of CitH3 (citrullinated histone H3), soluble TF, D-dimer, and prothrombin fragment 1+2 (P<0.0001). Blood CitH3 significantly correlated with blood soluble TF (Spearman rank correlation coefficient=0.7295; P=0.0206) and prothrombin fragment 1+2 (Spearman rank correlation coefficient=0.6809; P<0.0350) in patients with VITT. Platelet-neutrophil mixture added with VITT plasma resulted in higher NETs formation, soluble TF and thrombin generation, and platelet-dependent thrombus growth under laminar flow compared with IS and deep vein thrombosis plasma; these effects were blunted by PAD4 (protein arginine deiminase 4) and cathepsin G inhibitors, anti-FcγRIIa (Fc receptor for IgG class IIa), and high doses of heparin. Immunohistochemistry analysis showed a more marked expression of PAD4 along with more diffuse neutrophil infiltration and NETs formation as well as TF and cathepsin expression in VITT thrombus compared with thrombi from patients with IS. CONCLUSIONS: Patients with VITT display enhanced thrombogenesis by PAD4-mediated NETs formation via cathepsin G-mediated platelet/neutrophil interaction.
Assuntos
Trombocitopenia , Trombose , Vacinas , Humanos , Neutrófilos , Catepsina G , Trombina , Trombose/prevenção & controleRESUMO
Diverticular disease (DD) management is impaired by its pathogenesis, which is still not completely defined, with an unmet clinical need for improved therapies. Ex vivo DD human models demonstrated the presence of a transmural oxidative imbalance that supports an ischemic pathogenesis. This study aimed to assess, with the use of circulating biomarkers, insights into DD pathogenesis and possible therapeutic targets. Nox2-derived peptide, H2O2, antioxidant capacity, isoprostanes, thromboxanes, TNF-α, LPS and zonulin were evaluated by ELISA in healthy subjects (HS) and asymptomatic and symptomatic DD patients. Compared to HS, DD patients presented low antioxidant capacity and increase in sNox2-dp, H2O2 and isoprostanes paralleled to a TNFα increase, lower than that of oxidative markers. TxB2 production correlated to Nox2 and isoprostanes, suggesting platelet activation. An increase in zonulin and LPS highlighted the role of gut permeability and LPS translocation in DD pathogenesis. The increase of all the markers statistically correlated with DD severity. The present study confirmed the presence of a main oxidative imbalance in DD and provides evidence of platelet activation driven by LPS translocation. The use of circulating biomarkers could represent a new clinical tool for monitoring disease progression and validate therapeutic strategies never tested in DD as antioxidant supplementation.
RESUMO
BACKGROUND: Endothelial dysfunction, assessed by flow-mediated dilation (FMD), is related to poor prognosis in patients with COVID-19 pneumonia (CP). In this study, we explored the interplay among FMD, NADPH oxidase type 2 (NOX-2) and lipopolysaccharides (LPS) in hospitalised patients with CP, community acquired pneumonia (CAP) and controls (CT). METHODS: We enrolled 20 consecutive patients with CP, 20 hospitalised patients with CAP and 20 CT matched for sex, age, and main cardiovascular risk factors. In all subjects we performed FMD and collected blood samples to analyse markers of oxidative stress (soluble Nox2-derived peptide (sNOX2-dp), hydrogen peroxide breakdown activity (HBA), nitric oxide (NO), hydrogen peroxide (H2O2)), inflammation (TNF-α and IL-6), LPS and zonulin levels. RESULTS: Compared with controls, CP had significant higher values of LPS, sNOX-2-dp, H2O2,TNF-α, IL-6 and zonulin; conversely FMD, HBA and NO bioavailability were significantly lower in CP. Compared to CAP patients, CP had significantly higher levels of sNOX2-dp, H2O2, TNF-α, IL-6, LPS, zonulin and lower HBA. Simple linear regression analysis showed that FMD inversely correlated with sNOX2-dp, H2O2, TNF-α, IL-6, LPS and zonulin; conversely FMD was directly correlated with NO bioavailability and HBA. Multiple linear regression analysis highlighted LPS as the only predictor of FMD. CONCLUSION: This study shows that patients with COVID-19 have low-grade endotoxemia that could activate NOX-2, generating increased oxidative stress and endothelial dysfunction.
Assuntos
COVID-19 , Endotoxemia , Pneumonia , Doenças Vasculares , Humanos , Endotoxemia/diagnóstico , Lipopolissacarídeos , Peróxido de Hidrogênio , Interleucina-6 , Fator de Necrose Tumoral alfa , COVID-19/diagnóstico , Estresse OxidativoRESUMO
Gut dysbiosis is characterized by bacteria overgrowth that ultimately leads to increased intestinal barrier permeability and bacteria or bacteria product translocation such as lipopolysaccharide (LPS) in the portal and eventually systemic circulation. Intestinal epithelial cells and hepatocytes encompass enzymatic armamentarium to counteract the LPS toxic effect, however impaired degradation results in LPS accumulation in hepatocytes and endothelial wall. Experimental and clinical study documented that in patients with liver disease, such as non-alcoholic fatty acid liver disease (NAFLD), low-grade endotoxemia by LPS is implicated in liver inflammation and thrombosis via interaction with its Toll-like receptor 4 (TLR4) expressed by hepatocytes and platelets. Furthermore, studies in patients with severe atherosclerosis documented that LPS localizes into atherosclerotic plaque in close association with activated macrophages expressing TLR4 suggesting a role for LPS in vascular inflammation, atherosclerotic progression, and thrombosis. Finally, LPS may directly interact with myocardial cells to induce electric and functional changes leading to atrial fibrillation or heart failure. This review will focus on experimental and clinical evidence suggesting low-grade endotoxemia as mechanism potentially accounting for vascular damage occurring at level of hepatic and systemic circulation and myocardial cells.
RESUMO
Splanchnic vein thrombosis (SVT) is an unusual-site venous thromboembolism that includes portal, mesenteric, and splenic vein thrombosis as well as the Budd-Chiari syndrome. SVT is a relatively rare disease (portal vein thrombosis and Budd-Chiari syndrome are, respectively, the most and the least common presentations); roughly onethird of the cases are detected incidentally, and liver cirrhosis and solid cancer represent the main risk factors. Once SVT is diagnosed, careful patient evaluation should be performed to assess the stage, grade, and extension of the thrombosis, as well as the risks and benefits of the anticoagulation regimen. Anticoagulant therapy is effective in SVT treatment and is associated with high rates of vein recanalization, low rates of thrombosis progression or recurrence, and an acceptable rate of bleeding complications. Most available data come from observational studies in patients with liver cirrhosis-related SVT receiving lowmolecularweight heparin or vitamin K antagonists. Data on the use of direct oral anticoagulants are increasing and promising. In selected patients and in specialized centers, interventional procedures may be considered in adjunction to anticoagulation in the cases of mesenteric or extensive SVT, intestinal ischemia, or in the patients whose condition deteriorates despite adequate anticoagulant therapy. In this narrative review, we summarize the available data regarding anticoagulation in patients with SVT, identify specific subgroups of patients who may achieve the greatest benefits from anticoagulant therapy, and provide practical advice for clinicians caring for these patients.
Assuntos
Síndrome de Budd-Chiari , Trombose Venosa , Humanos , Síndrome de Budd-Chiari/complicações , Síndrome de Budd-Chiari/diagnóstico , Anticoagulantes/efeitos adversos , Cirrose Hepática/complicações , Fatores de RiscoRESUMO
Background and aims: Offspring of patients with early myocardial infarction are at higher cardiovascular risk, but the underlying physio-pathological mechanism is unclear. NADPH oxidase-type 2 (NOX-2) plays a pivotal role as mediator of oxidative stress and could be involved in activating platelets in these patients. Furthermore, altered intestinal permeability and serum lipopolysaccharide (LPS) could be a trigger to promote NOX-2 activation and platelet aggregation. This study aims to evaluate the behavior of low grade endotoxemia, oxidative stress and platelet activation in offspring of patients with early myocardial infarction. Methods: We enrolled, in a cross-sectional study, 46 offspring of patients with early myocardial infarction and 86 healthy subjects (HS). LPS levels and gut permeability (assessed by zonulin), oxidative stress (assessed by serum NOX-2-derived peptide (sNOX2-dp) release, hydrogen peroxide (H2O2) production and isoprostanes), serum nitric oxide (NO) bioavailability and platelet activation (by serum thromboxane B2 (TXB2) and soluble P-Selectin (sP-Selectin)) were analyzed. Results: Compared to HS, offspring of patients with early myocardial infarction had higher values of LPS, zonulin, serum isoprostanes, sNOX2-dp H2O2, TXB2, p-selectin and lower NO bioavailability. Logistic regression analysis showed that the variables associated with offspring of patients with early myocardial infarction were LPS, TXB2 and isoprostanes. The multiple linear regression analysis confirmed that serum NOX-2, isoprostanes, p-selectin and H2O2 levels were significantly associated to LPS. Furthermore, serum LPS, isoprostanes and TXB2 levels were significantly associated with sNOX-2-dp. Conclusions: Offspring of patients with early myocardial infarction have a low grade endotoxemia that could generate oxidative stress and platelet activation increasing their cardiovascular risk. Future studies are needed to understand the role of dysbiosis in this population.