Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892072

RESUMO

Histone deacetylase 6 (HDAC6) is increasingly recognized for its potential in targeted disease therapy. This study delves into the mechanistic and structural nuances of HDAC6 inhibition by difluoromethyl-1,3,4-oxadiazole (DFMO) derivatives, a class of non-hydroxamic inhibitors with remarkable selectivity and potency. Employing a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) kinetic experiments, comprehensive enzymatic characterizations, and X-ray crystallography, we dissect the intricate details of the DFMO-HDAC6 interaction dynamics. More specifically, we find that the chemical structure of a DMFO and the binding mode of its difluoroacetylhydrazide derivative are crucial in determining the predominant hydrolysis mechanism. Our findings provide additional insights into two different mechanisms of DFMO hydrolysis, thus contributing to a better understanding of the HDAC6 inhibition by oxadiazoles in disease modulation and therapeutic intervention.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Oxidiazóis , Oxidiazóis/química , Oxidiazóis/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Cristalografia por Raios X , Cinética , Ligação Proteica , Modelos Moleculares , Relação Estrutura-Atividade
2.
Biology (Basel) ; 12(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626935

RESUMO

Histone deacetylases (HDACs) participate with histone acetyltransferases in the modulation of the biological activity of a broad array of proteins, besides histones. Histone deacetylase 6 is unique among HDAC as it contains two catalytic domains, an N-terminal microtubule binding region and a C-terminal ubiquitin binding domain. Most of its known biological roles are related to its protein lysine deacetylase activity in the cytoplasm. The design of specific inhibitors is the focus of a large number of medicinal chemistry programs in the academy and industry because lowering HDAC6 activity has been demonstrated to be beneficial for the treatment of several diseases, including cancer, and neurological and immunological disorders. Here, we show how re-evaluation of the mechanism of action of selected HDAC6 inhibitors, by monitoring the time-dependence of the onset and relief of the inhibition, revealed instances of slow-binding/slow-release inhibition. The same approach, in conjunction with X-ray crystallography, in silico modeling and mass spectrometry, helped to propose a model of inhibition of HDAC6 by a novel difluoromethyloxadiazole-based compound that was found to be a slow-binding substrate analog of HDAC6, giving rise to a tightly bound, long-lived inhibitory derivative.

3.
J Biol Chem ; 299(1): 102800, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528061

RESUMO

Histone deacetylase 6 (HDAC6) is an attractive drug development target because of its role in the immune response, neuropathy, and cancer. Knockout mice develop normally and have no apparent phenotype, suggesting that selective inhibitors should have an excellent therapeutic window. Unfortunately, current HDAC6 inhibitors have only moderate selectivity and may inhibit other HDAC subtypes at high concentrations, potentially leading to side effects. Recently, substituted oxadiazoles have attracted attention as a promising novel HDAC inhibitor chemotype, but their mechanism of action is unknown. Here, we show that compounds containing a difluoromethyl-1,3,4-oxadiazole (DFMO) moiety are potent and single-digit nanomolar inhibitors with an unprecedented greater than 104-fold selectivity for HDAC6 over all other HDAC subtypes. By combining kinetics, X-ray crystallography, and mass spectrometry, we found that DFMO derivatives are slow-binding substrate analogs of HDAC6 that undergo an enzyme-catalyzed ring opening reaction, forming a tight and long-lived enzyme-inhibitor complex. The elucidation of the mechanism of action of DFMO derivatives paves the way for the rational design of highly selective inhibitors of HDAC6 and possibly of other HDAC subtypes as well with potentially important therapeutic implications.


Assuntos
Histona Desacetilases , Oxidiazóis , Animais , Camundongos , Desacetilase 6 de Histona/química , Histona Desacetilases/genética , Oxidiazóis/farmacologia , Camundongos Knockout , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Histona Desacetilase 1
4.
J Biomol Struct Dyn ; 40(1): 297-311, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886033

RESUMO

Designing dual small molecule inhibitors against enzymes associated with cancer has turned into a new strategy in cancer chemotherapy. Targeting DNA methyltransferase (DNMT) and histone deacetylase (HDAC) enzymes, involved in epigenetic modifications, are considered as promising treatments for a wide range of cancers, due to their association with the initiation, proliferation, and survival of cancer cells. In this study, for the first time, the dual inhibitors of the histone deacetylases 8 (HDAC8) and DNA methyltransferase 1 (DNMT1) has introduced as novel potential candidates for epigenetic-based cancer therapeutics. This research has been facilitated by employing pharmacophore-based virtual screening of ZINC and Maybridge databases, as well as performing molecular docking, molecular dynamics simulations and free binding energy calculation on the top derived compound. Results have demonstrated that the suggested compounds not only adopt highly favorable conformations but also possess strong binding interaction with the HDAC8 enzyme. Additionally, the obtained results from the experimental assay confirmed the predicted behavior of inhibitors from virtual screening. These results can be used for further optimization to yield promising more effective candidates for the treatment of cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
ACS Med Chem Lett ; 12(11): 1810-1817, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795871

RESUMO

Nonselective histone deacetylase (HDAC) inhibitors show dose-limiting side effects due to the inhibition of multiple, essential HDAC subtypes that can be limited or prevented by restricting their selectivity. We herein report the crystal structures of zebrafish HDAC6 catalytic domain 2 (zHDAC6-CD2) in complex with the selective HDAC6 inhibitors ITF3756 and ITF3985 and shed light on the role of fluorination in the selectivity of benzohydroxamate-based structures over class I isoforms. The reason for the enhancement in the selectivity of the benzohydroxamate-based compounds is the presence of specific interactions between the fluorinated linker and the key residues Gly582, Ser531, and His614 of zHDAC6, which are hindered in class I HDAC isoforms by the presence of an Aspartate that replaces Ser531. These results can be used in the design and development of novel, highly selective HDAC6 inhibitors.

6.
J Med Chem ; 62(23): 10711-10739, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31710483

RESUMO

Histone deacetylase 6 (HDAC6) is a peculiar HDAC isoform whose expression and functional alterations have been correlated with a variety of pathologies such as autoimmune disorders, neurodegenerative diseases, and cancer. It is primarily a cytoplasmic protein, and its deacetylase activity is focused mainly on nonhistone substrates such as tubulin, heat shock protein (HSP)90, Foxp3, and cortactin, to name a few. Selective inhibition of HDAC6 does not show cytotoxic effects in healthy cells, normally associated with the inhibition of Class I HDAC isoforms. Here, we describe the design and synthesis of a new class of potent and selective HDAC6 inhibitors that bear a pentaheterocyclic central core. These compounds show a remarkably low toxicity both in vitro and in vivo and are able to increase the function of regulatory T cells (Tregs) at well-tolerated concentrations, suggesting a potential clinical use for the treatment of degenerative, autoimmune diseases and for organ transplantation.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Ácidos Hidroxâmicos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Histonas/metabolismo , Camundongos , Isoformas de Proteínas , Baço/citologia , Linfócitos T Reguladores , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
Oncotarget ; 6(7): 5059-71, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25671298

RESUMO

We investigated the pre-clinical activities of two novel histone deacetylase inhibitors (HDACi), ITF-A and ITF-B, in a large panel of pre-clinical lymphoma models. The two compounds showed a dose-dependent anti-proliferative activity in the majority of cell lines. Gene expression profiling (GEP) of diffuse large B-cell lymphoma (DLBCL) cells treated with the compounds showed a modulation of genes involved in chromatin structure, cell cycle progression, apoptosis, B-cell signaling, and genes encoding metallothioneins. Cell lines showed differences between the concentrations of ITF-A and ITF-B needed to cause anti-proliferative or cytotoxic activity, and cell cycle and apoptosis genes appeared implicated in determining the type of response. In particular, CDKN1A expression was higher in DLBCL cells that, to undergo apoptosis, required a much higher amount of drug than that necessary to induce only an anti-proliferative effect.In conclusion, the two novel HDACi ITF-A and ITF-B demonstrated anti-proliferative activity across different mature B-cell lymphoma cell lines. Basal CDKN1A levels appeared to be important in determining the gap between HDACi concentrations causing cell cycle arrest and those that lead to cell death.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidores de Histona Desacetilases/farmacologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Perfilação da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Resultado do Tratamento
8.
Arch Biochem Biophys ; 515(1-2): 1-13, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21864500

RESUMO

MICALs form a conserved multidomain protein family essential for cytoskeletal rearrangements. To complement structural information available, we produced the FAD-containing monooxygenase-like domain of human MICAL-1 (MICAL-MO) in forms differing for the presence and location of a His-tag, which only influences the protein yields. The K(m) for NADPH of the NADPH oxidase reaction is sensitive to ionic strength and type of ions. The apparent k(cat) (pH 7) is limited by enzyme reduction by NADPH, which occurs without detectable intermediates, as established by anaerobic rapid reaction experiments. The sensitivity to ionic strength and type of ions and the pH dependence of the steady-state kinetic parameters extend MICAL-MO similarity with enzymes of the p-hydroxybenzoate hydroxylase class at the functional level. The reaction is also sensitive to solvent viscosity, providing a tool to monitor the conformational changes predicted to occur during turnover. Finally, it was confirmed that MICAL-MO promotes actin depolymerization, and it was shown that F-actin, but not G-actin, stimulates NADPH oxidation by increasing k(cat) and k(cat)/K(NADPH) (≈5 and ≈200-fold, respectively) with an apparent K(m) for actin of 4.7µM, under conditions that stabilize F-actin. The time-course of NADPH oxidation shows substrate recycling, indicating the possible reversibility of MICAL effect.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas com Domínio LIM/metabolismo , NADPH Oxidases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Bases , Proteínas do Citoesqueleto/química , Primers do DNA , Humanos , Concentração de Íons de Hidrogênio , Cinética , Proteínas com Domínio LIM/química , Proteínas dos Microfilamentos , Oxigenases de Função Mista
9.
FEBS J ; 276(8): 2368-80, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19348008

RESUMO

First principles molecular dynamics studies on active-site models of flavocytochrome b2 (L-lactate : cytochrome c oxidoreductase, Fcb2), in complex with the substrate, were carried out for the first time to contribute towards establishing the mechanism of the enzyme-catalyzed L-lactate oxidation reaction, a still-debated issue. In the calculated enzyme-substrate model complex, the L-lactate alpha-OH hydrogen is hydrogen bonded to the active-site base H373 Nepsilon, whereas the Halpha is directed towards flavin N5, suggesting that the reaction is initiated by alpha-OH proton abstraction. Starting from this structure, simulation of L-lactate oxidation led to formation of the reduced enzyme-pyruvate complex by transfer of a hydride from lactate to flavin mononucleotide, without intermediates, but with alpha-OH proton abstraction preceding Halpha transfer and a calculated free energy barrier (12.1 kcal mol(-1)) consistent with that determined experimentally (13.5 kcal mol(-1)). Simulation results also revealed features that are of relevance to the understanding of catalysis in Fcb2 homologs and in a number of flavoenzymes. Namely, they highlighted the role of: (a) the flavin mononucleotide-ribityl chain 2'OH group in maintaining the conserved K349 in a geometry favoring flavin reduction; (b) an active site water molecule belonging to a S371-Wat-D282-H373 hydrogen-bonded chain, conserved in the structures of Fcb2 family members, which modulates the reactivity of the key catalytic histidine; and (c) the flavin C4a-C10a locus in facilitating proton transfer from the substrate to the active-site base, favoring the initial step of the lactate dehydrogenation reaction.


Assuntos
Simulação por Computador , L-Lactato Desidrogenase (Citocromo)/química , Ácido Láctico/química , Catálise , Domínio Catalítico , Ligação de Hidrogênio , Cinética , Modelos Moleculares
10.
J Biol Chem ; 283(13): 8237-49, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18199747

RESUMO

The three-dimensional structure of the hexameric (alphabeta)(6) 1.2-MDa complex formed by glutamate synthase has been determined at subnanometric resolution by combining cryoelectron microscopy, small angle x-ray scattering, and molecular modeling, providing for the first time a molecular model of this complex iron-sulfur flavoprotein. In the hexameric species, interprotomeric alpha-alpha and alpha-beta contacts are mediated by the C-terminal domain of the alpha subunit, which is based on a beta helical fold so far unique to glutamate synthases. The alphabeta protomer extracted from the hexameric model is fully consistent with it being the minimal catalytically active form of the enzyme. The structure clarifies the electron transfer pathway from the FAD cofactor on the beta subunit, to the FMN on the alpha subunit, through the low potential [4Fe-4S](1+/2+) centers on the beta subunit and the [3Fe-4S](0/1+) cluster on the alpha subunit. The (alphabeta)(6) hexamer exhibits a concentration-dependent equilibrium with alphabeta monomers and (alphabeta)(2) dimers, in solution, the hexamer being destabilized by high ionic strength and, to a lower extent, by the reaction product NADP(+). Hexamerization seems to decrease the catalytic efficiency of the alphabeta protomer only 3-fold by increasing the K(m) values measured for l-Gln and 2-OG. However, it cannot be ruled out that the (alphabeta)(6) hexamer acts as a scaffold for the assembly of multienzymatic complexes of nitrogen metabolism or that it provides a means to regulate the activity of the enzyme through an as yet unknown ligand.


Assuntos
Microscopia Crioeletrônica , Glutamato Sintase/metabolismo , Glutamato Sintase/ultraestrutura , Nanoestruturas/ultraestrutura , Catálise , Glutamato Sintase/química , Glutamato Sintase/genética , Cinética , Modelos Moleculares , Peso Molecular , NADP/química , NADP/metabolismo , Nanoestruturas/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Soluções , Análise Espectral , Homologia Estrutural de Proteína
11.
Biochemistry ; 45(11): 3563-71, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16533038

RESUMO

The plant-type ferredoxin/ferredoxin-NADP(+) reductase (Fd/FNR) redox system found in parasites of the phylum Apicomplexa has been proposed as a target for novel drugs used against life-threatening diseases such as malaria and toxoplasmosis. Like many proteins from these protists, apicomplexan FNRs are characterized by the presence of unique peptide insertions of variable length and yet unknown function. Since three-dimensional data are not available for any of the parasite FNRs, we used limited proteolysis to carry out an extensive study of the conformation of Toxoplasma gondii FNR. This led to identification of 11 peptide bonds susceptible to the action of four different proteases. Cleavage sites are clustered in four regions of the enzyme, which include two of its three species-specific insertions. Such regions are thus predicted to form flexible surface loops. The protein substrate Fd protected FNR against cleavage both at its N-terminal peptide and at its largest sequence insertion (28 residues). Deletion by protein engineering of the species-specific subdomain containing the latter insertion resulted in an enzyme form that, although catalytically active, displayed a 10-fold decreased affinity for Fd. In contrast, removal of the first 15 residues of the enzyme unexpectedly enhanced its interaction with Fd. Thus, two flexible polypeptide regions of T. gondii FNR are involved in Fd interaction but have opposite roles in modulating the binding affinity for the protein ligand. In this respect, T. gondii FNR differs from plant FNRs, where the N-terminal peptide contributes to the stabilization of their complex with Fd.


Assuntos
Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Ferredoxina-NADP Redutase/biossíntese , Ferredoxinas/biossíntese , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Especificidade da Espécie , Relação Estrutura-Atividade , Especificidade por Substrato
12.
FEBS Lett ; 576(3): 375-80, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15498566

RESUMO

Electron transfer between plant-type [2Fe-2S] ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) depends on the physical interaction between both proteins. We have applied a random mutagenesis approach with subsequent in vivo selection using the yeast two-hybrid system to obtain mutants of Toxoplasma gondii FNR with higher affinity for Fd. One mutant showed a 10-fold enhanced binding using affinity chromatography on immobilized Fd. A single serine-to-arginine exchange in the active site was responsible for its increased affinity. The mutant reductase was also enzymatically inactive. Homology modeling of the mutant FNR-Fd complex predicts substantial alterations of protein-FAD interactions in the active site of the enzyme with subsequent structural changes. Collectively, for the first time a point mutation in this important class of enzymes is described which leads to greatly enhanced affinity for its protein ligand.


Assuntos
Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , Toxoplasma/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
13.
J Biol Chem ; 277(50): 48463-71, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12370173

RESUMO

Toxoplasma gondii possesses an apicoplast-localized, plant-type ferredoxin-NADP(+) reductase. We have cloned a [2Fe-2S] ferredoxin from the same parasite to investigate the interplay of the two redox proteins. A detailed characterization of the two purified recombinant proteins, particularly as to their interaction, has been performed. The two-protein complex was able to catalyze electron transfer from NADPH to cytochrome c with high catalytic efficiency. The redox potential of the flavin cofactor (FAD/FADH(-)) of the reductase was shown to be more positive than that of the NADP(+)/NADPH couple, thus favoring electron transfer from NADPH to yield reduced ferredoxin. The complex formation between the reductase and ferredoxins from various sources was studied both in vitro by several approaches (enzymatic activity, cross-linking, protein fluorescence quenching, affinity chromatography) and in vivo by the yeast two-hybrid system. Our data show that the two proteins yield an active complex with high affinity, strongly suggesting that the two proteins of T. gondii form a physiological redox couple that transfers electrons from NADPH to ferredoxin, which in turn is used by some reductive biosynthetic pathway(s) of the apicoplast. These data provide the basis for the exploration of this redox couple as a drug target in apicomplexan parasites.


Assuntos
Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Clonagem Molecular , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/isolamento & purificação , Ferredoxinas/genética , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...