Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691654

RESUMO

The creation of new families of intermetallic or Zintl-phase compounds with high-spin orbit elements has attracted a considerable amount of interest due to the presence of unique electronic, magnetic, and topological phenomena in these materials. Here, we establish the synthesis and structural and electronic characterization of KMg4Bi3 single crystals having a new structure type. KMg4Bi3 crystallizes in space group Cmcm having unit cell parameters a = 4.7654(11) Å, b = 15.694(4) Å, and c = 13.4200(30) Å and features an edge-sharing MgBi4 tetrahedral framework that forms cage-like one-dimensional channels around K+ ions. Diffuse reflectance absorption measurements indicate that this material has a narrow band gap of 0.27 eV, which is in close agreement with the electronic structure calculations that predict it to be a trivial insulator. Electronic transport measurements from 80 to 380 K indicate this material behaves like a narrow band gap semiconductor doped to ∼1018 holes/cm-3, with thermopowers of ∼100 µV/K and appreciable magnetoresistance. Electronic structure calculations indicate this material is close to a topological phase transition and becomes a topological insulator when the lattice is uniformly expanded by 3.5%. Overall, this unique structure type expands the landscape of potential quantum materials.

2.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338892

RESUMO

Previous computational and experimental studies showed that charges located at the surroundings of hydrogen bonds can exert two opposite effects on them: rupture or strengthening of the hydrogen bond. This work aims to generalize the effect of charges in different hydrogen-bonded systems and to propose a coherent explanation of this effect. For these purposes, 19 systems with intra- and intermolecular hydrogen bonds were studied computationally with DFT. The FT-IR spectra of the systems were simulated, and two energy components of the hydrogen bond were studied separately to determine their variation upon the presence of a charge: charge transfer and molecular overlap. It was determined that either the breaking or strengthening of the hydrogen bond can be favored one over the other, for instance, depending on the heteroatom involved in the hydrogen bond. In addition, it is showed that the strengthening of the hydrogen bond by the presence of a charge is directly related to the decrease in charge transfer between the monomers, which is explained by an increase in molecular overlapping, suggesting a more covalent character of the interaction. The understanding of how hydrogen bonds are affected by charges is important, as it is a key towards a strategy to manipulate hydrogen bonds at convenience.


Assuntos
Elétrons , Hidrogênio , Ligação de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrofotometria Infravermelho , Hidrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...