Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321846

RESUMO

In March 2024, highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b H5N1 infections in dairy cows were first reported from Texas, USA1. Rapid dissemination to more than 190 farms in 13 states followed2. Here, we provide results of two independent clade 2.3.4.4b experimental infection studies evaluating (i) oronasal susceptibility and transmission in calves to a US H5N1 bovine isolate genotype B3.13 (H5N1 B3.13) and (ii) susceptibility of lactating cows following direct mammary gland inoculation of either H5N1 B3.13 or a current EU H5N1 wild bird isolate genotype euDG (H5N1 euDG). Inoculation of the calves resulted in moderate nasal replication and shedding with no severe clinical signs or transmission to sentinel calves. In dairy cows, infection resulted in no nasal shedding, but severe acute mammary gland infection with necrotizing mastitis and high fever was observed for both H5N1 isolates. Milk production was rapidly and drastically reduced and the physical condition of the cows was severely compromised. Virus titers in milk rapidly peaked at 108 TCID50/mL, but systemic infection did not ensue. Notably, adaptive mutation PB2 E627K emerged after intramammary replication of H5N1 euDG. Our data suggest that in addition to H5N1 B3.13, other HPAIV H5N1 strains have the potential to replicate in the udder of cows and that milk and milking procedures, rather than respiratory spread, are likely the primary routes of H5N1 transmission between cattle.

2.
J Vet Diagn Invest ; : 10406387241268322, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39233385

RESUMO

An 18-y-old American Saddlebred mare was admitted with fever and acute onset of neurologic signs including grade 3 of 5 ataxia, difficulty in prehension, and dull mentation. Because of financial restraints, desired testing could not be performed; the horse's condition declined despite supportive treatment, and euthanasia was elected. Postmortem examination revealed petechiae and ecchymoses in the meninges and neuroparenchyma of the encephalon. Blast-like neoplastic round cells were identified within the vasculature and areas of hemorrhage in the neuroparenchyma, the intestinal submucosa, and other organs, including the liver, kidney, lung, and mesenteric lymph node. Necrotizing enterocolitis and acute fibrinonecrotizing bacterial pneumonia were also noted. Of the atypical round cells in the encephalon, >70% expressed ionized calcium-binding adapter molecule 1 (Iba1), 10-20% expressed myeloperoxidase (MPO), and <10% expressed PAX5, CD3, CD20, CD79a, or MUM1. The bone marrow was diffusely effaced by neoplastic round cells expressing Iba1, and ~70% of these cells expressed MPO with no expression of CD3 or CD20. CD172a also immunolabeled a portion of the neoplastic cells. These findings were consistent with the diagnosis of acute myeloid leukemia-M1 with an unusual neurologic presentation.

4.
Vet Comp Oncol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164469

RESUMO

Canine osteosarcoma (OSA) is a malignancy that has been shown to modulate the host immune system. Macrophage colony-stimulating factor (M-CSF; CSF1) and interleukin-34 (IL-34; IL34) are both ligands of colony stimulating factor 1 receptor (CSF-1R), and may play a role in the pathogenesis of a variety of human cancers, including OSA. This study aimed to, (1) assess M-CSF and IL-34 expression in canine OSA cell lines and tissue samples, and (2) determine any correlations between M-CSF and IL-34 expression and immune cell infiltrates within canine OSA tissues. Four canine OSA cell lines and canine osteoblasts were treated with control media, TNFα (10 ng/mL) or IL-1ß (10 ng/mL) and analysed with RT-qPCR and ELISA. IL-34 and M-CSF mRNA and protein were detectable in all cell lines, however upregulation following TNFα or IL-1ß exposure was only consistently observed for transcript expression. Baseline expression of CSF1 and IL34 mRNA in OSA cell lines was equal to or higher than that of canine osteoblasts. All 10 OSA tissue samples expressed IL34 and CSF1 transcripts to varying degrees. Furthermore, CSF1 and IL34 expression both showed a moderate to high degree of correlation with M1 macrophage lineage-associated transcripts (CD80 and IL15RA). There was a moderate degree of correlation between CSF1 and CD163, but no correlation between IL34 and either M2 macrophage-associated transcripts (CD163 and CCL24). In summary, IL-34 and M-CSF are expressed in canine OSA cell lines and tissues, and expression positively correlates with a wide range of immune-related transcripts.

5.
J Vet Diagn Invest ; : 10406387241268315, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165089

RESUMO

Here we describe a case of fatal amebic gastritis associated with Naegleria australiensis infection in an 11-mo-old Linnaeus's two-toed sloth (Choloepus didactylus). The sloth had a history of weight loss and intermittent diarrhea for 18 d, and subsequently died despite empirical treatment. Postmortem findings included emaciation, gastric dilation with fluid content, and fibrinonecrotic gastritis with intralesional amebic trophozoites and cysts in the glandular region of the fundus. Transmission electron microscopy ruled out Amoebozoa of the family Entamoebidae based on the presence of mitochondria in the amoeboid organisms. PCR for pan-free-living amebae followed by next-generation sequencing of the PCR product revealed 99% identity with Naegleria australiensis. Gastric amebiasis has been reported sporadically in macropods and in leaf-eating monkeys with a sacculated stomach. To our knowledge, gastric amebiasis has not been reported previously in a sloth, which also has a sacculated and multi-chambered stomach.

6.
bioRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39149352

RESUMO

In March 2024, highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b H5N1 infections in dairy cows were first reported from Texas, USA. Rapid dissemination to more than 190 farms in 13 states followed. Here, we provide results of two independent clade 2.3.4.4b experimental infection studies evaluating (i) oronasal susceptibility and transmission in calves to a US H5N1 bovine isolate genotype B3.13 (H5N1 B3.13) and (ii) susceptibility of lactating cows following direct mammary gland inoculation of either H5N1 B3.13 or a current EU H5N1 wild bird isolate genotype euDG (H5N1 euDG). Inoculation of the calves resulted in moderate nasal replication and shedding with no severe clinical signs or transmission to sentinel calves. In dairy cows, infection resulted in no nasal shedding, but severe acute mammary gland infection with necrotizing mastitis and high fever was observed for both H5N1 genotypes/strains. Milk production was rapidly and drastically reduced and the physical condition of the cows was severely compromised. Virus titers in milk rapidly peaked at 108 TCID50/mL, but systemic infection did not ensue. Notably, adaptive mutation PB2 E627K emerged after intramammary replication of H5N1 euDG. Our data suggest that in addition to H5N1 B3.13, other HPAIV H5N1 strains have the potential to replicate in the udder of cows and that milk and milking procedures, rather than respiratory spread, are likely the primary routes of H5N1 transmission between cattle.

7.
J Wildl Dis ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39053909

RESUMO

It has been proposed that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that spread through human populations as a pandemic originated in Asian bats. There is concern that infected humans could transmit the virus to native North American bats; therefore, the susceptibility of several North American bat species to the pandemic virus has been experimentally assessed. Big brown bats (Eptesicus fuscus) were shown to be resistant to infection by SARS-CoV-2, whereas Mexican free-tailed bats (Tadarida brasiliensis) became infected and orally excreted moderate amounts of virus for up to 18 d postinoculation. Little brown bats (Myotis lucifugus) frequently contact humans, and their populations are threatened over much of their range due to white-nose syndrome, a fungal disease that is continuing to spread across North America. We experimentally challenged little brown bats with SARS-CoV-2 to determine their susceptibility and host potential and whether the virus presents an additional risk to this species. We found that this species was resistant to infection by SARS-CoV-2. These findings provide reassurance to wildlife rehabilitators, biologists, conservation scientists, and the public at large who are concerned with possible transmission of this virus to threatened bat populations.

8.
Emerg Microbes Infect ; 13(1): 2352434, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712637

RESUMO

Monkeypox virus (MPXV) is a re-emerging zoonotic poxvirus responsible for producing skin lesions in humans. Endemic in sub-Saharan Africa, the 2022 outbreak with a clade IIb strain has resulted in ongoing sustained transmission of the virus worldwide. MPXV has a relatively wide host range, with infections reported in rodent and non-human primate species. However, the susceptibility of many domestic livestock species remains unknown. Here, we report on a susceptibility/transmission study in domestic pigs that were experimentally inoculated with a 2022 MPXV clade IIb isolate or served as sentinel contact control animals. Several principal-infected and sentinel contact control pigs developed minor lesions near the lips and nose starting at 12 through 18 days post-challenge (DPC). No virus was isolated and no viral DNA was detected from the lesions; however, MPXV antigen was detected by IHC in tissue from a pustule of a principal infected pig. Viral DNA and infectious virus were detected in nasal and oral swabs up to 14 DPC, with peak titers observed at 7 DPC. Viral DNA was also detected in nasal tissues or skin collected from two principal-infected animals at 7 DPC post-mortem. Furthermore, all principal-infected and sentinel control animals enrolled in the study seroconverted. In conclusion, we provide the first evidence that domestic pigs are susceptible to experimental MPXV infection and can transmit the virus to contact animals.


Assuntos
Monkeypox virus , Mpox , Doenças dos Suínos , Animais , Monkeypox virus/fisiologia , Monkeypox virus/patogenicidade , Monkeypox virus/genética , Suínos , Mpox/transmissão , Mpox/virologia , Mpox/veterinária , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , DNA Viral/genética , Anticorpos Antivirais/sangue , Humanos , Pele/virologia , Nariz/virologia
9.
Emerg Microbes Infect ; 13(1): 2353292, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712345

RESUMO

ABSTRACTRapid evolution of highly pathogenic avian influenza viruses (HPAIVs) is driven by antigenic drift but also by reassortment, which might result in robust replication in and transmission to mammals. Recently, spillover of clade 2.3.4.4b HPAIV to mammals including humans, and their transmission between mammalian species has been reported. This study aimed to evaluate the pathogenicity and transmissibility of a mink-derived clade 2.3.4.4b H5N1 HPAIV isolate from Spain in pigs. Experimental infection caused interstitial pneumonia with necrotizing bronchiolitis with high titers of virus present in the lower respiratory tract and 100% seroconversion. Infected pigs shed limited amount of virus, and importantly, there was no transmission to contact pigs. Notably, critical mammalian-like adaptations such as PB2-E627 K and HA-Q222L emerged at low frequencies in principal-infected pigs. It is concluded that pigs are highly susceptible to infection with the mink-derived clade 2.3.4.4b H5N1 HPAIV and provide a favorable environment for HPAIV to acquire mammalian-like adaptations.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vison , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Vison/virologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Suínos , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , Espanha , Proteínas Virais/genética , Proteínas Virais/metabolismo , Eliminação de Partículas Virais
10.
Viruses ; 16(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543774

RESUMO

(1) Background: equid alphaherpesvirus-1 (EHV-1) is a highly contagious viral pathogen prevalent in most horse populations worldwide. Genome-editing technologies such as CRISPR/Cas9 have become powerful tools for precise RNA-guided genome modifications; (2) Methods: we designed single guide RNAs (sgRNA) to target three essential (ORF30, ORF31, and ORF7) and one non-essential (ORF74) EHV-1 genes and determine their effect on viral replication dynamics in vitro; (3) Results: we demonstrated that sgRNAs targeting essential lytic genes reduced EHV-1 replication, whereas those targeting ORF74 had a negligible effect. The sgRNAs targeting ORF30 showed the strongest effect on the suppression of EHV-1 replication, with a reduction in viral genomic copy numbers and infectious progeny virus output. Next-generation sequencing identified variants with deletions in the specific cleavage site of selective sgRNAs. Moreover, we evaluated the combination between different sgRNAs and found that the dual combination of sgRNAs targeting ORF30 and ORF7 significantly suppressed viral replication to lower levels compared to the use of a single sgRNA, suggesting a synergic effect; (4) Conclusion: data demonstrate that sgRNA-guided CRISPR/Cas9 can be used to inhibit EHV-1 replication in vitro, indicating that this programmable technique can be used to develop a novel, safe, and efficacious therapeutic and prophylactic approach against EHV-1.


Assuntos
Edição de Genes , Herpesvirus Equídeo 1 , Animais , Cavalos , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , Herpesvirus Equídeo 1/genética , Genoma Viral
11.
PLoS One ; 19(3): e0297796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517847

RESUMO

Feline respiratory disease complex (FRDC) is caused by a wide range of viral and bacterial pathogens. Both Influenza A virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) also induce respiratory diseases in cats. Two one-step multiplex qPCR/RT-qPCR assays were developed and validated: FRA_1 (Feline respiratory assay 1) for the detection of four viral targets and FRA_2 for the detection of three bacteria associated with FRDC. Both multiplex assays demonstrated high specificity, efficiency (93.51%-107.8%), linearity (> 0.998), analytical sensitivity (≤ 15 genome copies/µl), repeatability (coefficient of variation [CV] < 5%), and reproducibility (CV < 6%). Among the 63 clinical specimens collected from FRDC-suspected cats, 92.1% were positive for at least one pathogen and co-infection was detected in 57.1% of samples. Mycoplasma felis (61.9%) was the most found pathogen, followed by feline herpesvirus-1 (30.2%), Chlamydia felis (28.7%) and feline calicivirus (27.0%). SARS-CoV-2 was detected in two specimens. In summary, this new panel of qPCR/RT-qPCR assays constitutes a useful and reliable tool for the rapid detection of SARS-CoV-2 and viral and bacterial pathogens associated with FRDC in cats.


Assuntos
COVID-19 , Doenças Respiratórias , Gatos , Animais , SARS-CoV-2/genética , Reprodutibilidade dos Testes , COVID-19/diagnóstico , Bactérias/genética , Sensibilidade e Especificidade
12.
J Med Virol ; 96(1): e29408, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258331

RESUMO

Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Alumínio , Enzima de Conversão de Angiotensina 2 , Infecções Irruptivas , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2
13.
Microbiol Resour Announc ; 13(2): e0105723, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38289056

RESUMO

Canine pneumovirus was detected by RT-qPCR in 2022 from nasal swabs collected from two dogs with upper respiratory disease in a shelter in Louisiana, United States. The genomes from the designated strains CPnV USA/LA/2022/124423 and USA/LA/2022/123696 were sequenced and show the closest similarity to the pneumonia virus of mice J3666.

14.
Viruses ; 16(1)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257830

RESUMO

Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.


Assuntos
Infecções por Enterovirus , Saúde Única , Rotavirus , Criança , Lactente , Cavalos , Animais , Humanos , Rotavirus/genética , Saúde Pública , Gado , Mamíferos
15.
Microbiol Spectr ; 12(2): e0327023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230954

RESUMO

A wide range of animal species show variable susceptibility to SARS-CoV-2; however, host factors associated with varied susceptibility remain to be defined. Here, we examined whether susceptibility to SARS-CoV-2 and virus tropism in different animal species are dependent on the expression and distribution of the virus receptor angiotensin-converting enzyme 2 (ACE2) and the host cell factor transmembrane serine protease 2 (TMPRSS2). We cataloged the upper and lower respiratory tract of multiple animal species and humans in a tissue-specific manner and quantitatively evaluated the distribution and abundance of ACE2 and TMPRSS2 mRNA in situ. Our results show that: (i) ACE2 and TMPRSS2 mRNA are abundant in the conduction portion of the respiratory tract, (ii) ACE2 mRNA occurs at a lower abundance compared to TMPRSS2 mRNA, (iii) co-expression of ACE2-TMPRSS2 mRNAs is highest in those species with the highest susceptibility to SARS-CoV-2 infection (i.e., cats, Syrian hamsters, and white-tailed deer), and (iv) expression of ACE2 and TMPRSS2 mRNA was not altered following SARS-CoV-2 infection. Our results demonstrate that while specific regions of the respiratory tract are enriched in ACE2 and TMPRSS2 mRNAs in different animal species, this is only a partial determinant of susceptibility to SARS-CoV-2 infection.IMPORTANCESARS-CoV-2 infects a wide array of domestic and wild animals, raising concerns regarding its evolutionary dynamics in animals and potential for spillback transmission of emerging variants to humans. Hence, SARS-CoV-2 infection in animals has significant public health relevance. Host factors determining animal susceptibility to SARS-CoV-2 are vastly unknown, and their characterization is critical to further understand susceptibility and viral dynamics in animal populations and anticipate potential spillback transmission. Here, we quantitatively assessed the distribution and abundance of the two most important host factors, angiotensin-converting enzyme 2 and transmembrane serine protease 2, in the respiratory tract of various animal species and humans. Our results demonstrate that while specific regions of the respiratory tract are enriched in these two host factors, they are only partial determinants of susceptibility. Detailed analysis of additional host factors is critical for our understanding of the underlying mechanisms governing viral susceptibility and reservoir hosts.


Assuntos
COVID-19 , Cervos , Humanos , Animais , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Sistema Respiratório , RNA Mensageiro , Tropismo , Serina Endopeptidases
16.
Emerg Microbes Infect ; 13(1): 2281356, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938158

RESUMO

Since emerging in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has repeatedly crossed the species barrier with natural infections reported in various domestic and wild animal species. The emergence and global spread of SARS-CoV-2 variants of concern (VOCs) has expanded the range of susceptible host species. Previous experimental infection studies in cattle using Wuhan-like SARS-CoV-2 isolates suggested that cattle were not likely amplifying hosts for SARS-CoV-2. However, SARS-CoV-2 sero- and RNA-positive cattle have since been identified in Europe, India, and Africa. Here, we investigated the susceptibility and transmission of the Delta and Omicron SARS-CoV-2 VOCs in cattle. Eight Holstein calves were co-infected orally and intranasally with a mixed inoculum of SARS-CoV-2 VOCs Delta and Omicron BA.2. Twenty-four hours post-challenge, two sentinel calves were introduced to evaluate virus transmission. The co-infection resulted in a high proportion of calves shedding SARS-CoV-2 RNA at 1- and 2-days post-challenge (DPC). Extensive tissue distribution of SARS-CoV-2 RNA was observed at 3 and 7 DPC and infectious virus was recovered from two calves at 3 DPC. Next-generation sequencing revealed that only the SARS-CoV-2 Delta variant was detected in clinical samples and tissues. Similar to previous experimental infection studies in cattle, we observed only limited seroconversion and no clear evidence of transmission to sentinel calves. Together, our findings suggest that cattle are more permissive to infection with SARS-CoV-2 Delta than Omicron BA.2 and Wuhan-like isolates but, in the absence of horizontal transmission, are not likely to be reservoir hosts for currently circulating SARS-CoV-2 variants.


Assuntos
COVID-19 , Coinfecção , Animais , Bovinos , COVID-19/veterinária , Coinfecção/veterinária , RNA Viral/genética , SARS-CoV-2/genética
17.
Vet Pathol ; 61(1): 95-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306029

RESUMO

Caryospora-like organisms (CLOs) form a clade of at least 11 genotypes of related coccidia that can cause epizootic mortality in marine turtles. The biology, transmission, host species range, and host cell tropism of these organisms are still largely unknown. The goal of this study was to characterize the host cell tropism, pathologic and ultrastructural features, and phylogeny associated with the first report of a mortality event due to CLO in the freshwater red-eared slider turtle (Trachemys scripta elegans). Sudden mortalities within a clutch of captive-raised red-eared slider hatchlings (n = 8) were recorded, and deceased animals had severe segmental to diffuse, transmural, fibrinonecrotic enterocolitis and multifocal to coalescing hepatic necrosis, among other lesions associated with numerous intracytoplasmic developing stages of intralesional coccidia. Among the different developmental stages, merozoites were ultrastructurally characterized by an apical complex. A pan-apicomplexan polymerase chain reaction (PCR) yielded a 347 bp-amplicon matching the Schellackia/Caryospora-like clade with 99.1% identity to the US3 strain from green sea turtles (Chelonia mydas) and 99.1% identity to Schellackia sp. Isolate OC116. Surviving hatchlings were treated with toltrazuril sulfone (ponazuril) but were subsequently euthanized due to the risk of spreading the parasite to other chelonids in the collection. The ponazuril-treated hatchlings (n = 4) had mild proliferative anterior enteritis, with few intraepithelial coccidia in one hatchling confirmed as CLO by PCR. This is the first report of Caryospora-like coccidiosis in non-cheloniid turtles, highlighting the relevance of this disease as an emerging highly pathogenic intestinal and extra-intestinal form of coccidiosis of turtles with potential cross-species infectivity.


Assuntos
Coccidiose , Tartarugas , Animais , Tartarugas/genética , Coccidiose/veterinária , Intestinos , Filogenia
18.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37904941

RESUMO

Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.

19.
Viruses ; 15(9)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37766287

RESUMO

Canine infectious respiratory disease complex (CIRDC) is the primary cause of respiratory disease in the canine population and is caused by a wide array of viruses and bacterial pathogens with coinfections being common. Since its recognition in late 2019, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been reported to cause respiratory disease in dogs. Therefore, the rapid detection and differentiation of SARS-CoV-2 from other common viral and bacterial agents is critical from a public health standpoint. Here, we developed and validated a panel of four one-step multiplex qPCR/RT-qPCR assays for the detection and identification of twelve pathogens associated with CIRDC (canine adenovirus-2, canine distemper virus, canine herpesvirus-1, canine influenza A virus, canine parainfluenza virus, canine pneumovirus, canine respiratory coronavirus, SARS-CoV-2, Bordetella bronchiseptica, Streptococcus equi subsp. zooepidemicus, Mycoplasma cynos, and M. canis), as well as the identification of three main CIV subtypes (i.e., H3N2, H3N8, and H1N1). All developed assays demonstrated high specificity and analytical sensitivity. This panel was used to test clinical specimens (n = 76) from CIRDC-suspected dogs. M. canis, M. cynos, and CRCoV were the most frequently identified pathogens (30.3%, 25.0%, and 19.7% of samples, respectively). The newly emerging pathogens CPnV and SARS-CoV-2 were detected in 5.3% of samples and coinfections were identified in 30.3%. This new multiplex qPCR/RT-qPCR panel is the most comprehensive panel developed thus far for identifying CIRDC pathogens, along with SARS-CoV-2.


Assuntos
COVID-19 , Canidae , Coinfecção , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Infecções Respiratórias , Cães , Animais , SARS-CoV-2/genética , Coinfecção/diagnóstico , Coinfecção/veterinária , Vírus da Influenza A Subtipo H3N2 , COVID-19/diagnóstico , COVID-19/veterinária , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/veterinária
20.
Viruses ; 15(9)2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37766296

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was transmitted from humans to dogs and cats (reverse zoonosis) during the COVID-19 pandemic. SARS-CoV-2 has been detected in fecal samples of infected dogs and cats, indicating potential fecal-oral transmission, environmental contamination, and zoonotic transmission (i.e., spillback). Additionally, gastrointestinal viral infections are prevalent in dogs and cats. In this study, we developed and validated a panel of multiplex one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays for the simultaneous detection of SARS-CoV-2 and common canine enteric viruses: Canine Enteric Assay_1 (CEA_1) for the detection of canine adenovirus-1, canine enteric coronavirus, canine distemper virus, and canine parvovirus, and CEA_2 for the detection of rotavirus A (RVA), and SARS-CoV-2); or common feline enteric viruses (Feline Enteric Assay_1 (FEA_1) for the detection of feline enteric coronavirus, feline panleukopenia virus, RVA, and SARS-CoV-2). All assays demonstrated high analytical sensitivity, detecting as few as 5-35 genome copies/µL in multiplex format. The repeatability and reproducibility of the multiplex assays were excellent, with coefficient of variation <4%. Among the 58 clinical samples tested, 34.5% were positive for at least one of these viruses, and SARS-CoV-2 was detected in two samples collected from one dog and one cat, respectively. In conclusion, these newly developed one-step multiplex RT-qPCR assays allow for rapid diagnosis of enteric viral infections, including SARS-CoV-2, in dogs and cats.


Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Infecções por Enterovirus , Enterovirus , Rotavirus , Cães , Gatos , Animais , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/veterinária , Pandemias , Doenças do Gato/diagnóstico , Reprodutibilidade dos Testes , Doenças do Cão/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...