Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 25169-25180, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695741

RESUMO

Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications. Here, we present screen-printed graphene electrodes that are processed with thermal annealing to achieve high surface area and electrical conductivity for sensitive biodetection via electrochemical impedance spectroscopy. As a proof-of-concept, this biosensing platform is utilized for electrochemical detection of SARS-CoV-2. To ensure reliable specificity in the presence of multiple variants, biolayer interferometry (BLI) is used as a label-free and dynamic screening method to identify optimal antibodies for concurrent affinity to the Spike S1 proteins of Delta, Omicron, and Wild Type SARS-CoV-2 variants while maintaining low affinity to competing pathogens such as Influenza H1N1. The BLI-identified antibodies are robustly bound to the graphene electrode surface via oxygen moieties that are introduced during the thermal annealing process. The resulting electrochemical immunosensors achieve superior metrics including rapid detection (55 s readout following 15 min of incubation), low limits of detection (approaching 500 ag/mL for the Omicron variant), and high selectivity toward multiple variants. Importantly, the sensors perform well on clinical saliva samples detecting as few as 103 copies/mL of SARS-CoV-2 Omicron, following CDC protocols. The combination of the screen-printed graphene sensing platform and effective antibody selection using BLI can be generalized to a wide range of point-of-care immunosensors.


Assuntos
Técnicas Biossensoriais , Grafite , Interferometria , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Grafite/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Técnicas Biossensoriais/métodos , Humanos , Interferometria/instrumentação , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/diagnóstico , COVID-19/virologia , Eletrodos , Técnicas Eletroquímicas/métodos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/imunologia
2.
PLoS One ; 18(8): e0290256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590297

RESUMO

SARS-CoV-2 virus induced CoVID-19 pandemic has accelerated the development of diagnostic tools. Devices integrated with electrochemical biosensors may be an interesting alternative to respond to the high demand for testing, particularly in contexts where access to standard detection technologies is lacking. Aptamers as recognition elements are useful due to their stability, specificity, and sensitivity to binding target molecules. We have developed a non-invasive electrochemical aptamer-based biosensor targeting SARS-CoV-2 in human saliva. The aptamer is expected to detect the Spike protein of SARS-CoV-2 wildtype and its variants. Laser-induced graphene (LIG) electrodes coated with platinum nanoparticles were biofunctionalized with a biotin-tagged aptamer. Electrochemical Impedance Spectroscopy (EIS) for BA.1 sensing was conducted in sodium chloride/sodium bicarbonate solution supplemented with pooled saliva. To estimate sensing performance, the aptasensor was tested with contrived samples of UV-attenuated virions from 10 to 10,000 copies/ml. Selectivity was assessed by exposing the aptasensor to non-targeted viruses (hCoV-OC43, Influenza A, and RSV-A). EIS data outputs were further used to select a suitable response variable and cutoff frequency. Capacitance increases in response to the gradual loading of the attenuated BA.1. The aptasensor was sensitive and specific for BA.1 at a lower viral load (10-100 copies/ml) and was capable of discriminating between negative and positive contrived samples (with strain specificity against other viruses: OC43, Influenza A, and RSV-A). The aptasensor detected SARS-CoV-2 with an estimated LOD of 1790 copies/ml in contrived samples. In human clinical samples, the aptasensor presents an accuracy of 72%, with 75% of positive percent of agreement and 67% of negative percent of agreement. Our results show that the aptasensor is a promising candidate to detect SARS-CoV-2 during early stages of infection when virion concentrations are low, which may be useful for preventing the asymptomatic spread of CoVID-19.


Assuntos
COVID-19 , Grafite , Influenza Humana , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Pandemias , Saliva , Platina , Lasers , Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA