Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 11: 601876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329747

RESUMO

Glycine max NAC81 (GmNAC81) is a downstream effector of the DCD/NRP-mediated cell death signaling, which interacts with GmNAC30 to fully induce the caspase 1-like vacuolar processing enzyme (VPE) expression, the executioner of the cell death program. GmNAC81 has been previously shown to positively modulate leaf senescence via the NRP/GmNAC81/VPE signaling module. Here, we examined the transcriptome induced by GmNAC81 overexpression and leaf senescence and showed that GmNAC81 further modulates leaf senescence by regulating an extensive repertoire of functionally characterized senescence-associated genes (SAGs). Because the NRP/GmNAC81/VPE signaling circuit also relays stress-induced cell death signals, we examined the effect of GmNAC81 overexpression in drought responses. Enhanced GmNAC81 expression in the transgenic lines increased sensitivity to water deprivation. Under progressive drought, the GmNAC81-overexpressing lines displayed severe leaf wilting, a larger and faster decline in leaf Ψw, relative water content (RWC), photosynthesis rate, stomatal conductance, and transpiration rate, in addition to higher Ci/Ca and lower Fm/Fv ratios compared to the BR16 control line. Collectively, these results indicate that the photosynthetic activity and apparatus were more affected by drought in the transgenic lines. Consistent with hypersensitivity to drought, chlorophyll loss, and lipid peroxidation were higher in the GmNAC81-overexpressing lines than in BR16 under dehydration. In addition to inducing VPE expression, GmNAC81 overexpression uncovered the regulation of typical drought-responsive genes. In particular, key regulators and effectors of ABA signaling were suppressed by GmNAC81 overexpression. These results suggest that GmNAC81 may negatively control drought tolerance not only via VPE activation but also via suppression of ABA signaling.

2.
Nat Commun ; 10(1): 4996, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676803

RESUMO

Plants deploy various immune receptors to recognize pathogens and defend themselves. Crosstalk may happen among receptor-mediated signal transduction pathways in the same host during simultaneous infection of different pathogens. However, the related function of the receptor-like kinases (RLKs) in thwarting different pathogens remains elusive. Here, we report that NIK1, which positively regulates plant antiviral immunity, acts as an important negative regulator of antibacterial immunity. nik1 plants exhibit dwarfed morphology, enhanced disease resistance to bacteria and increased PAMP-triggered immunity (PTI) responses, which are restored by NIK1 reintroduction. Additionally, NIK1 negatively regulates the formation of the FLS2/BAK1 complex. The interaction between NIK1 and FLS2/BAK1 is enhanced upon flg22 perception, revealing a novel PTI regulatory mechanism by an RLK. Furthermore, flg22 perception induces NIK1 and RPL10A phosphorylation in vivo, activating antiviral signalling. The NIK1-mediated inverse modulation of antiviral and antibacterial immunity may allow bacteria and viruses to activate host immune responses against each other.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Imunidade Vegetal/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/microbiologia , Arabidopsis/virologia , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Imunidade Vegetal/imunologia , Vírus de Plantas/imunologia , Vírus de Plantas/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/imunologia , Pseudomonas syringae/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
3.
Front Plant Sci ; 9: 1864, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619426

RESUMO

The NAC (NAM, ATAF, and CUC) genes encode transcription factors involved with the control of plant morph-physiology and stress responses. The release of the last soybean (Glycine max) genome assembly (Wm82.a2.v1) raised the possibility that new NAC genes would be present in the soybean genome. Here, we interrogated the last version of the soybean genome against a conserved NAC domain structure. Our analysis identified 32 putative novel NAC genes, updating the superfamily to 180 gene members. We also organized the genes in 15 phylogenetic subfamilies, which showed a perfect correlation among sequence conservation, expression profile, and function of orthologous Arabidopsis thaliana genes and NAC soybean genes. To validate our in silico analyses, we monitored the stress-mediated gene expression profiles of eight new NAC-genes by qRT-PCR and monitored the GmNAC senescence-associated genes by RNA-seq. Among ER stress, osmotic stress and salicylic acid treatment, all the novel tested GmNAC genes responded to at least one type of stress, displaying a complex expression profile under different kinetics and extension of the response. Furthermore, we showed that 40% of the GmNACs were differentially regulated by natural leaf senescence, including eight (8) newly identified GmNACs. The developmental and stress-responsive expression profiles of the novel NAC genes fitted perfectly with their phylogenetic subfamily. Finally, we examined two uncharacterized senescence-associated proteins, GmNAC065 and GmNAC085, and a novel, previously unidentified, NAC protein, GmNAC177, and showed that they are nuclear localized, and except for GmNAC065, they display transactivation activity in yeast. Consistent with a role in leaf senescence, transient expression of GmNAC065 and GmNAC085 induces the appearance of hallmarks of leaf senescence, including chlorophyll loss, leaf yellowing, lipid peroxidation and accumulation of H2O2. GmNAC177 was clustered to an uncharacterized subfamily but in close proximity to the TIP subfamily. Accordingly, it was rapidly induced by ER stress and by salicylic acid under late kinetic response and promoted cell death in planta. Collectively, our data further substantiated the notion that the GmNAC genes display functional and expression profiles consistent with their phylogenetic relatedness and established a complete framework of the soybean NAC superfamily as a foundation for future analyses.

4.
PLoS One ; 12(7): e0181153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704519

RESUMO

BACKGROUND: Genetic studies have largely concentrated on the impact of somatic mutations found in coding regions, and have neglected mutations outside of these. However, 3' untranslated regions (3' UTR) mutations can also disrupt or create miRNA target sites, and trigger oncogene activation or tumor suppressor inactivation. METHODS: We used next-generation sequencing to widely screen for genetic alterations within predicted miRNA target sites of oncogenes associated with colorectal cancer, and evaluated the functional impact of a new somatic mutation. Target sequencing of 47 genes was performed for 29 primary colorectal tumor samples. For 71 independent samples, Sanger methodology was used to screen for E2F1 mutations in miRNA predicted target sites, and the functional impact of these mutations was evaluated by luciferase reporter assays. RESULTS: We identified germline and somatic alterations in E2F1. Of the 100 samples evaluated, 3 had germline alterations at the MIR205-5p target site, while one had a somatic mutation at MIR136-5p target site. E2F1 gene expression was similar between normal and tumor tissues bearing the germline alteration; however, expression was increased 4-fold in tumor tissue that harbored a somatic mutation compared to that in normal tissue. Luciferase reporter assays revealed both germline and somatic alterations increased E2F1 activity relative to wild-type E2F1. CONCLUSIONS: We demonstrated that somatic mutation within E2F1:MIR136-5p target site impairs miRNA-mediated regulation and leads to increased gene activity. We conclude that somatic mutations that disrupt miRNA target sites have the potential to impact gene regulation, highlighting an important mechanism of oncogene activation.


Assuntos
Neoplasias Colorretais/genética , Fator de Transcrição E2F1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Análise de Sequência de DNA/métodos , Regiões 3' não Traduzidas , Idoso , Sítios de Ligação , Fator de Transcrição E2F1/química , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Regulação para Cima
5.
BMC Plant Biol ; 16(1): 156, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405371

RESUMO

BACKGROUND: The developmental and cell death domain (DCD)-containing asparagine-rich proteins (NRPs) were first identified in soybean (Glycine max) as transducers of a cell death signal derived from prolonged endoplasmic reticulum (ER) stress, osmotic stress, drought or developmentally-programmed leaf senescence via the GmNAC81/GmNAC30/GmVPE signaling module. In spite of the relevance of the DCD/NRP-mediated signaling as a versatile adaptive response to multiple stresses, mechanistic knowledge of the pathway is lacking and the extent to which this pathway may operate in the plant kingdom has not been investigated. RESULTS: Here, we demonstrated that the DCD/NRP-mediated signaling also propagates a stress-induced cell death signal in other plant species with features of a programmed cell death (PCD) response. In silico analysis revealed that several plant genomes harbor conserved sequences of the pathway components, which share functional analogy with their soybean counterparts. We showed that GmNRPs, GmNAC81and VPE orthologs from Arabidopsis, designated as AtNRP-1, AtNRP-2, ANAC036 and gVPE, respectively, induced cell death when transiently expressed in N. benthamiana leaves. In addition, loss of AtNRP1 and AtNRP2 function attenuated ER stress-induced cell death in Arabidopsis, which was in marked contrast with the enhanced cell death phenotype displayed by overexpressing lines as compared to Col-0. Furthermore, atnrp-1 knockout mutants displayed enhanced sensitivity to PEG-induced osmotic stress, a phenotype that could be complemented with ectopic expression of either GmNRP-A or GmNRP-B. In addition, AtNRPs, ANAC036 and gVPE were induced by osmotic and ER stress to an extent that was modulated by the ER-resident molecular chaperone binding protein (BiP) similarly as in soybean. Finally, as putative downstream components of the NRP-mediated cell death signaling, the stress induction of AtNRP2, ANAC036 and gVPE was dependent on the AtNRP1 function. BiP overexpression also conferred tolerance to water stress in Arabidopsis, most likely due to modulation of the drought-induced NRP-mediated cell death response. CONCLUSION: Our results indicated that the NRP-mediated cell death signaling operates in the plant kingdom with conserved regulatory mechanisms and hence may be target for engineering stress tolerance and adaptation in crops.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Glycine max/química , Glycine max/genética
6.
Genomics ; 105(5-6): 265-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25666663

RESUMO

Somatically acquired chromosomal rearrangements occur at early stages during tumorigenesis and can be used to indirectly detect tumor cells, serving as highly sensitive and tumor-specific biomarkers. Advances in high-throughput sequencing have allowed the genome-wide identification of patient-specific chromosomal rearrangements to be used as personalized biomarkers to efficiently assess response to treatment, detect residual disease and monitor disease recurrence. However, sequencing and data processing costs still represent major obstacles for the widespread application of personalized biomarkers in oncology. We developed a computational pipeline (ICRmax) for the cost-effective identification of a minimal set of tumor-specific interchromosomal rearrangements (ICRs). We examined ICRmax performance on sequencing data from rectal tumors and simulated data achieving an average accuracy of 68% for ICR identification. ICRmax identifies ICRs from low-coverage sequenced tumors, eliminates the need to sequence a matched normal tissue and significantly reduces the costs that limit the utilization of personalized biomarkers in the clinical setting.


Assuntos
Biomarcadores Tumorais/metabolismo , Aberrações Cromossômicas , Biologia Computacional/métodos , Neoplasias/diagnóstico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...