Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ochsner J ; 21(2): 190-193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239381

RESUMO

Background: Endovascular advances have shifted the treatment algorithms for traumatic intracranial pseudoaneurysms (IPs) from vessel sacrifice to reconstruction. The Pipeline embolization device (PED) is a flow-diverting stent that promotes endothelialization across the lesion and reconstitutes the parent vessel lumen. Case Report: A 66-year-old male with a history of a right orbital apex lesion presented for biopsy with ophthalmology. Ophthalmology performed a right lateral orbitotomy complicated by brisk arterial bleeding from a proximal right middle cerebral artery (MCA) pseudoaneurysm. The MCA pseudoaneurysm was treated endovascularly with a PED, resulting in immediate stasis of contrast within the lesion without compilation. Interval follow-up angiograms 6 weeks and 6 months after the procedure showed no evidence of recurrence and a widely patent stent. Conclusion: The PED provided a rapid, minimally invasive, and durable treatment option for an acutely ruptured IP. We illustrate that endovascular management with flow diversion can be effectively used in select cases and provides a way to reconstruct the damaged vessel lumen and obliterate the aneurysm.

3.
ACS Appl Mater Interfaces ; 12(32): 35845-35855, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805785

RESUMO

Compared to the visible and near-infrared, the short-wave infrared region (SWIR; 1000-2000 nm) has excellent properties for in vivo imaging: low autofluorescence, reduced scattering, and a low-absorption cross-section of blood or tissue. However, the general adoption of SWIR imaging in biomedical research will be enhanced by a broader availability of versatile and bright contrast materials. Quantum dots (QDs) are bright and compact SWIR emitters with narrow size distributions and emission spectra, but their use is limited by the shortcomings of established ligand systems for SWIR QDs. Established ligands often result in SWIR probes with either limited colloidal stability, large size, or broad size distribution or a combination of all three. We present a polymeric QD ligand designed to be compatible with oleate-coated QDs. Our polymeric acid ligand is a copolymer bearing carboxylic acid anchoring groups and PEG-550 chains to solubilize the QD-ligand construct. After a mild and rapid ligand exchange, the resulting constructs are compact (<11 nm hydrodynamic diameter) and have narrow size distribution. Both qualities are preserved for several months in isotonic saline. The constructs are bright in vivo, and to demonstrate their suitability for imaging, we perform whole-body imaging and lymphatic imaging, including visualization of lymphatic flow.


Assuntos
Ácidos Carboxílicos/química , Corantes Fluorescentes/química , Imagem Óptica/métodos , Pontos Quânticos/química , Alanina/química , Animais , Raios Infravermelhos , Ligantes , Linfonodos/diagnóstico por imagem , Masculino , Metacrilatos/química , Camundongos , Camundongos Nus , Ácido Oleico/química , Polietilenoglicóis/química , Solubilidade , Propriedades de Superfície , Água
4.
Nat Biomed Eng ; 4(8): 801-813, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572196

RESUMO

Monitoring the progression of non-alcoholic fatty liver disease is hindered by a lack of suitable non-invasive imaging methods. Here, we show that the endogenous pigment lipofuscin displays strong near-infrared and shortwave-infrared fluorescence when excited at 808 nm, enabling label-free imaging of liver injury in mice and the discrimination of pathological processes from normal liver processes with high specificity and sensitivity. We also show that the near-infrared and shortwave-infrared fluorescence of lipofuscin can be used to monitor the progression and regression of liver necroinflammation and fibrosis in mouse models of non-alcoholic fatty liver disease and advanced fibrosis, as well as to detect non-alcoholic steatohepatitis and cirrhosis in biopsied samples of human liver tissue.


Assuntos
Lipofuscina/metabolismo , Hepatopatias/diagnóstico por imagem , Hepatopatias/patologia , Animais , Biomarcadores/metabolismo , Doença Crônica , Progressão da Doença , Feminino , Fluorescência , Humanos , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Fígado/diagnóstico por imagem , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Hepatopatias/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Imagem Óptica , Espectroscopia de Luz Próxima ao Infravermelho
5.
Int J Pediatr Otorhinolaryngol ; 114: 15-19, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30262355

RESUMO

OBJECTIVE: To evaluate the feasibility of Shortwave infrared (SWIR) otoscopy in a pediatric population and establish differences with visible otoscopy. METHODS: Pediatric patients 3 years of age and older seen in the otolaryngology clinic with an audiogram and tympanogram obtained within a week of the visit were recruited for video otoscopy using visible light otoscopy and SWIR otoscopy. Videos were rated by two otolaryngologists based on ability to identify the promontory, ability to identify the ossicular chain and presence or absence of middle ear fluid. RESULTS: A total of 74 video recordings of ears were obtained in 20 patients. We obtained interpretable images in 63/74 (85.1%) ears. There was no statistical significance between ability to perform SWIR otoscopy versus white light video otoscopy as indicated by a p-value of 0.376. There was high inter-rater agreement for identification of both the promontory and the ossicular chain with Kappa values of 0.81 and 0.92 respectively. There was statistical significance between SWIR otoscopy and visible otoscopy in the ability to image the promontory (p = 0.012) and the ossicular chain (p = 0.010). Increased contrast of middle ear fluid was seen in SWIR otoscopy when compared to visible otoscopy. CONCLUSION: SWIR otoscopy is feasible in a pediatric population and could offer some advantages over visible light otoscopy such as better visualization of the middle ear structures through the tympanic membrane and increased contrast for middle ear effusions.


Assuntos
Otite Média com Derrame/diagnóstico , Otoscopia/métodos , Criança , Pré-Escolar , Ossículos da Orelha/diagnóstico por imagem , Orelha Média/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Humanos , Lactente , Masculino , Otoscopia/estatística & dados numéricos , Membrana Timpânica/diagnóstico por imagem , Gravação em Vídeo
6.
Proc Natl Acad Sci U S A ; 115(37): 9080-9085, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150372

RESUMO

Recent technology developments have expanded the wavelength window for biological fluorescence imaging into the shortwave infrared. We show here a mechanistic understanding of how drastic changes in fluorescence imaging contrast can arise from slight changes of imaging wavelength in the shortwave infrared. We demonstrate, in 3D tissue phantoms and in vivo in mice, that light absorption by water within biological tissue increases image contrast due to attenuation of background and highly scattered light. Wavelengths of strong tissue absorption have conventionally been avoided in fluorescence imaging to maximize photon penetration depth and photon collection, yet we demonstrate that imaging at the peak absorbance of water (near 1,450 nm) results in the highest image contrast in the shortwave infrared. Furthermore, we show, through microscopy of highly labeled ex vivo biological tissue, that the contrast improvement from water absorption enables resolution of deeper structures, resulting in a higher imaging penetration depth. We then illustrate these findings in a theoretical model. Our results suggest that the wavelength-dependent absorptivity of water is the dominant optical property contributing to image contrast, and is therefore crucial for determining the optimal imaging window in the infrared.


Assuntos
Raios Infravermelhos , Modelos Teóricos , Imagem Óptica/métodos , Água/química , Animais , Camundongos , Imagem Óptica/instrumentação
7.
Proc Natl Acad Sci U S A ; 115(17): 4465-4470, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29626132

RESUMO

Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Meios de Contraste , Corantes Fluorescentes , Raios Infravermelhos , Microscopia Intravital/métodos , Vasos Linfáticos/diagnóstico por imagem , Animais , Bovinos , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Verde de Indocianina , Camundongos , Microscopia de Fluorescência/métodos , Trastuzumab/farmacocinética , Trastuzumab/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-29119058

RESUMO

For in vivo imaging, the short-wavelength infrared region (SWIR; 1000-2000 nm) provides several advantages over the visible and near-infrared regions: general lack of autofluorescence, low light absorption by blood and tissue, and reduced scattering. However, the lack of versatile and functional SWIR emitters has prevented the general adoption of SWIR imaging by the biomedical research community. Here, we introduce a class of high-quality SWIR-emissive indium-arsenide-based quantum dots (QDs) that are readily modifiable for various functional imaging applications, and that exhibit narrow and size-tunable emission and a dramatically higher emission quantum yield than previously described SWIR probes. To demonstrate the unprecedented combination of deep penetration, high spatial resolution, multicolor imaging and fast-acquisition-speed afforded by the SWIR QDs, we quantified, in mice, the metabolic turnover rates of lipoproteins in several organs simultaneously and in real time as well as heartbeat and breathing rates in awake and unrestrained animals, and generated detailed three-dimensional quantitative flow maps of the mouse brain vasculature.

9.
Nat Commun ; 7: 12749, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27834371

RESUMO

With the emergence of applications based on short-wavelength infrared light, indium arsenide quantum dots are promising candidates to address existing shortcomings of other infrared-emissive nanomaterials. However, III-V quantum dots have historically struggled to match the high-quality optical properties of II-VI quantum dots. Here we present an extensive investigation of the kinetics that govern indium arsenide nanocrystal growth. Based on these insights, we design a synthesis of large indium arsenide quantum dots with narrow emission linewidths. We further synthesize indium arsenide-based core-shell-shell nanocrystals with quantum yields up to 82% and improved photo- and long-term storage stability. We then demonstrate non-invasive through-skull fluorescence imaging of the brain vasculature of murine models, and show that our probes exhibit 2-3 orders of magnitude higher quantum yields than commonly employed infrared emitters across the entire infrared camera sensitivity range. We anticipate that these probes will not only enable new biomedical imaging applications, but also improved infrared nanocrystal-LEDs and photon-upconversion technology.


Assuntos
Arsenicais/síntese química , Encéfalo/diagnóstico por imagem , Nanopartículas Metálicas/química , Pontos Quânticos/química , Animais , Índio , Raios Infravermelhos , Camundongos , Imagem Óptica
10.
Nano Lett ; 16(10): 6070-6077, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27627129

RESUMO

Lead chalcogenide colloidal nanocrystals (NCs) are promising materials for solution processable optoelectronics. However, there is little agreement on the identity and character of PbS NC emission for different degrees of quantum confinement-a critical parameter for realizing applications for these nanocrystals. In this work, we combine ensemble and single NC spectroscopies to interrogate preparations of lead sulfide NCs. We use solution photon correlation Fourier spectroscopy (S-PCFS) to measure the average single NC linewidth of near-infrared-emitting PbS quantum dots and find it to be dominated by homogeneous broadening. We further characterize PbS NCs using temperature-dependent linear and time-resolved emission spectroscopy which demonstrate that a kinetically accessed defect state dominates room temperature emission of highly confined emitting NCs. These experiments, taken together, demonstrate that the linewidth and Stokes shift of PbS NCs are the result of emission from two states: a thermally accessed defect-with an energetically pinned charge carrier-and an inhomogeneously broadened band-edge state.

11.
Proc Natl Acad Sci U S A ; 113(36): 9989-94, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551085

RESUMO

Visualizing structures deep inside opaque biological tissues is one of the central challenges in biomedical imaging. Optical imaging with visible light provides high resolution and sensitivity; however, scattering and absorption of light by tissue limits the imaging depth to superficial features. Imaging with shortwave infrared light (SWIR, 1-2 µm) shares many advantages of visible imaging, but light scattering in tissue is reduced, providing sufficient optical penetration depth to noninvasively interrogate subsurface tissue features. However, the clinical potential of this approach has been largely unexplored because suitable detectors, until recently, have been either unavailable or cost prohibitive. Here, taking advantage of newly available detector technology, we demonstrate the potential of SWIR light to improve diagnostics through the development of a medical otoscope for determining middle ear pathologies. We show that SWIR otoscopy has the potential to provide valuable diagnostic information complementary to that provided by visible pneumotoscopy. We show that in healthy adult human ears, deeper tissue penetration of SWIR light allows better visualization of middle ear structures through the tympanic membrane, including the ossicular chain, promontory, round window niche, and chorda tympani. In addition, we investigate the potential for detection of middle ear fluid, which has significant implications for diagnosing otitis media, the overdiagnosis of which is a primary factor in increased antibiotic resistance. Middle ear fluid shows strong light absorption between 1,400 and 1,550 nm, enabling straightforward fluid detection in a model using the SWIR otoscope. Moreover, our device is easily translatable to the clinic, as the ergonomics, visual output, and operation are similar to a conventional otoscope.


Assuntos
Diagnóstico por Imagem/métodos , Orelha Média/diagnóstico por imagem , Raios Infravermelhos , Otoscopia/métodos , Orelha Média/fisiopatologia , Humanos
12.
Adv Child Dev Behav ; 50: 1-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26956068

RESUMO

Issues of equality and social justice remain important concerns for contemporary societies. Struggles for equal rights and fair treatment continue in both organized movements and in acts of everyday life. We first consider trends in psychological research that fail to address such struggles and may even impede theoretical understanding of the complex processes of thought and action involved when individuals confront situations of welfare, justice, and rights. Then, we consider research, which attempts to address these issues. We review studies on the development of moral judgments and on understandings of equality and distributive justice. We also discuss research that accounts for the varying social contexts of individual lives and conceives of human behavior as engaged in moral judgments, which often produce resistance and opposition to injustice. In conclusion, we call for more attention in psychological research to issues of equity and social justice.


Assuntos
Direitos Humanos , Psicologia , Pesquisa , Justiça Social , Adolescente , Desenvolvimento do Adolescente , Criança , Desenvolvimento Infantil , Tomada de Decisões , Humanos , Princípios Morais
13.
J Am Chem Soc ; 137(33): 10468-71, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26256820

RESUMO

Due to their structural and mechanical properties, 1D helical protein assemblies represent highly attractive design targets for biomolecular engineering and protein design. Here we present a designed, tetrameric protein building block, Zn8R4, which assembles via Zn coordination interactions into a series of crystalline, helical nanotubes whose widths can be controlled by solution conditions. X-ray crystallography and transmission electron microscopy (TEM) measurements indicate that all classes of protein nanotubes are constructed through the same 2D arrangement of Zn8R4 tetramers held together by Zn coordination. The mechanical properties of these nanotubes are correlated with their widths. All Zn8R4 nanotubes are found to be highly flexible despite possessing crystalline order, owing to their minimal interbuilding-block interactions mediated solely by metal coordination.


Assuntos
Nanotecnologia/métodos , Nanotubos/química , Proteínas/química , Modelos Moleculares , Estrutura Secundária de Proteína , Zinco/química
14.
Proc Natl Acad Sci U S A ; 111(8): 2897-902, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516140

RESUMO

The designed assembly of proteins into well-defined supramolecular architectures not only tests our understanding of protein-protein interactions, but it also provides an opportunity to tailor materials with new physical and chemical properties. Previously, we described that RIDC3, a designed variant of the monomeric electron transfer protein cytochrome cb562, could self-assemble through Zn(2+) coordination into uniform 1D nanotubes or 2D arrays with crystalline order. Here we show that these 1D and 2D RIDC3 assemblies display very high chemical stabilities owing to their metal-mediated frameworks, maintaining their structural order in ≥90% (vol/vol) of several polar organic solvents including tetrahydrofuran (THF) and isopropanol (iPrOH). In contrast, the unassembled RIDC3 monomers denature in ∼30% THF and 50% iPrOH, indicating that metal-mediated self-assembly also leads to considerable stabilization of the individual building blocks. The 1D and 2D RIDC3 assemblies are highly thermostable as well, remaining intact at up to ∼70 °C and ∼90 °C, respectively. The 1D nanotubes cleanly convert into the 2D arrays on heating above 70 °C, a rare example of a thermal crystalline-to-crystalline conversion in a biomolecular assembly. Finally, we demonstrate that the Zn-directed RIDC3 assemblies can be used to spatiotemporally control the templated growth of small Pt(0) nanocrystals. This emergent function is enabled by and absolutely dependent on both the supramolecular assembly of RIDC3 molecules (to form a periodically organized structural template) and their innate redox activities (to direct Pt(2+) reduction).


Assuntos
Metais/química , Complexos Multiproteicos/síntese química , Nanotubos/química , Domínios e Motivos de Interação entre Proteínas , 2-Propanol , Fluorescência , Furanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Oxirredução , Platina , Estabilidade Proteica
15.
Langmuir ; 27(7): 4134-41, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21361358

RESUMO

A series of quaternary ammonium amphiphiles (A-n) bearing carboxylic acid groups were designed and synthesized. The branched bolaform structures can be constructed by dimerizations of carboxylic acid groups through intermolecular hydrogen bonding, as demonstrated by the Fourier transform infrared (FT-IR) spectra and the temperature-dependent FT-IR spectra. The thermotropic organizations of branched bolaform ammonium dimer complexes were characterized by differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction. We investigated the influence of the spacer between the cationic group and the benzene ring on the thermotropic organization. A-6 with short lateral alkyl chains formed a simple layered structure at room temperature and exhibited smectic A mesophase above 145 °C, whereas A-8 with intermediate lateral chain length organized into smectic A phase over a wide temperature range. A further increase of the length (n = 10, 12) of the lateral chains resulted in the formation of lamellar structure with in-plane layered periodicity, which is rare in the organization of ionic compounds. A packing model of the quasi-2D lamellar was proposed on the basis of the experimental data of X-ray diffraction results. Notably, the quasi-2D lamellar structure could evolve into a simple layer with the increase of temperature. The present results showed a direct relationship in which the branched architecture can be applied to tune the self-assembly behavior of ionic amphiphiles and is allowed to construct new layered superstructure.

16.
Plant Physiol Biochem ; 43(2): 91-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15820655

RESUMO

Arabidopsis seedlings grown for 14 d without phosphate (P) exhibited stunted growth and other visible symptoms associated with P deficiency. RNA contents in shoots decreased nearly 90%, relative to controls. In shoots, expression of Pht1;2, encoding an inducible high-affinity phosphate transporter, increased threefold, compared with controls, and served as a molecular marker for P limitation. Transcript levels for five enzymes (aspartate transcarbamoylase, ATCase, EC 2.1.3.2; carbamoyl phosphate synthetase, CPSase, EC 6.3.5.5); UMP synthase, EC 2.4.1.10, EC 4.1.1.23; uracil phosphoribosyltransferase, UPRTase, EC 2.4.2.9; UMP kinase, EC 2.7.1.14) increased 2-10-fold in response to P starvation in shoots. These enzymes, which utilize phosphorylated intermediates at putative regulated steps in de novo synthesis and salvaging pathways leading to UMP and pyrimidine nucleotide formation, appear to be coordinately regulated, at the level of gene expression. This response may facilitate pyrimidine nucleotide synthesis under P limitation in this plant. Expression of P-dependent and P-independent phosphoribosyl pyrophosphate (PRPP) synthases (PRS2 and PRS3, respectively) which provide PRPP, the phosphoribosyl donor in UMP synthesis via both de novo and salvaging pathways, was differentially regulated in response to P limitation. PRS2 mRNA levels increased twofold in roots and shoots of P-starved plants, while PRS3 was constitutively-expressed. PRS3 may play a novel role in providing PRPP to cellular metabolism under low P availability.


Assuntos
Arabidopsis/metabolismo , Organofosfatos/metabolismo , Pirimidinas/biossíntese , Arabidopsis/enzimologia , Expressão Gênica , Proteínas de Transporte de Fosfato/biossíntese , Proteínas de Transporte de Fosfato/genética , Filogenia , Raízes de Plantas/enzimologia , RNA Mensageiro/biossíntese , RNA de Plantas/metabolismo , Ribose-Fosfato Pirofosfoquinase/biossíntese , Ribose-Fosfato Pirofosfoquinase/genética , Plântula/enzimologia , Uridina Monofosfato/biossíntese , Uridina Monofosfato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...