Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3270, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277333

RESUMO

Batrachochytrium salamandrivorans (Bsal) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal, and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , Comércio , Quitridiomicetos/fisiologia , Internacionalidade , Anfíbios/microbiologia , Urodelos/microbiologia , Biodiversidade , Anuros , América do Norte/epidemiologia , Micoses/veterinária , Micoses/microbiologia
2.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36294589

RESUMO

The emerging fungal amphibian pathogen, Batrachochytrium salamandrivorans (Bsal), is currently spreading across Europe and given its estimated invasion potential, has the capacity to decimate salamander populations worldwide. Fungicides are a promising in situ management strategy for Bsal due to their ability to treat the environment and infected individuals. However, antifungal drugs or pesticides could adversely affect the environment and non-target hosts, thus identifying safe, effective candidate fungicides for in situ treatment is needed. Here, we estimated the inhibitory fungicidal efficacy of five plant-derived fungicides (thymol, curcumin, allicin, 6-gingerol, and Pond Pimafix®) and one chemical fungicide (Virkon® Aquatic) against Bsal zoospores in vitro. We used a broth microdilution method in 48-well plates to test the efficacy of six concentrations per fungicide on Bsal zoospore viability. Following plate incubation, we performed cell viability assays and agar plate growth trials to estimate the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of each fungicide. All six fungicides exhibited inhibitory and fungicidal effects against Bsal growth, with estimated MIC concentrations ranging from 60 to 0.156 µg/mL for the different compounds. Allicin showed the greatest efficacy (i.e., lowest MIC and MFC) against Bsal zoospores followed by curcumin, Pond Pimafix®, thymol, 6-gingerol, and Virkon® Aquatic, respectively. Our results provide evidence that plant-derived fungicides are effective at inhibiting and killing Bsal zoospores in vitro and may be useful for in situ treatment. Additional studies are needed to estimate the efficacy of these fungicides at inactivating Bsal in the environment and treating Bsal-infected amphibians.

3.
Transbound Emerg Dis ; 69(2): 731-741, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33617686

RESUMO

Transmission is the fundamental process whereby pathogens infect their hosts and spread through populations, and can be characterized using mathematical functions. The functional form of transmission for emerging pathogens can determine pathogen impacts on host populations and can inform the efficacy of disease management strategies. By directly measuring transmission between infected and susceptible adult eastern newts (Notophthalmus viridescens) in aquatic mesocosms, we identified the most plausible transmission function for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans (Bsal). Although we considered a range of possible transmission functions, we found that Bsal transmission was best explained by pure frequency dependence. We observed that >90% of susceptible newts became infected within 17 days post-exposure to an infected newt across a range of host densities and initial infection prevalence treatments. Under these conditions, we estimated R0  = 4.9 for Bsal in an eastern newt population. Our results suggest that Bsal has the capability of driving eastern newt populations to extinction and that managing host density may not be an effective management strategy. Intervention strategies that prevent Bsal introduction or increase host resistance or tolerance to infection may be more effective. Our results add to the growing empirical evidence that transmission of wildlife pathogens can saturate and be functionally frequency-dependent.


Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Micoses/epidemiologia , Micoses/microbiologia , Micoses/veterinária , Notophthalmus viridescens , Salamandridae
4.
J Wildl Dis ; 57(4): 942-948, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34516643

RESUMO

Batrachochytrium salamandrivorans is an emerging fungus that is causing salamander declines in Europe. We evaluated whether an invasive frog species (Cuban treefrog, Osteopilus septentrionalis) that is found in international trade could be an asymptomatic carrier when exposed to zoospore doses known to infect salamanders. We discovered that Cuban treefrogs could be infected with B. salamandrivorans and, surprisingly, that chytridiomycosis developed in animals at the two highest zoospore doses. To fulfill Koch's postulates, we isolated B. salamandrivorans from infected frogs, exposed eastern newts (Notophthalmus viridescens) to the isolate, and verified infection and disease by histopathology. This experiment represents the first documentation of B. salamandrivorans chytridiomycosis in a frog species and substantially expands the conservation threat and possible mobilization of this pathogen in trade.


Assuntos
Quitridiomicetos , Urodelos , Animais , Batrachochytrium , Comércio , Internacionalidade , Urodelos/microbiologia
5.
Viruses ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452306

RESUMO

Ranaviruses are an important wildlife pathogen of fish, amphibians, and reptiles. Previous studies have shown that susceptibility and severity of infection can vary with age, host species, virus strain, temperature, population density, and presence of environmental stressors. Experiments are limited with respect to interactions between this pathogen and environmental stressors in reptiles. In this study, we exposed hatchling red-eared slider turtles (Trachemys scripta elegans) to herbicide and ranavirus treatments to examine direct effects and interactions on growth, morbidity, and mortality. Turtles were assigned to one of three herbicide treatments or a control group. Turtles were exposed to atrazine, Roundup ProMax®, or Rodeo® via water bath during the first 3 weeks of the experiment. After 1 week, turtles were exposed to either a control (cell culture medium) or ranavirus-infected cell lysate via injection into the pectoral muscles. Necropsies were performed upon death or upon euthanasia after 5 weeks. Tissues were collected for histopathology and detection of ranavirus DNA via quantitative PCR. Only 57.5% of turtles exposed to ranavirus tested positive for ranaviral DNA at the time of death. Turtles exposed to ranavirus died sooner and lost more mass and carapace length, but not plastron length, than did controls. Exposure to environmentally relevant concentrations of herbicides did not impact infection rate, morbidity, or mortality of hatchling turtles due to ranavirus exposure. We also found no direct effects of herbicide or interactions with ranavirus exposure on growth or survival time. Results of this study should be interpreted in the context of the modest ranavirus infection rate achieved, the general lack of growth, and the unplanned presence of an additional pathogen in our study.


Assuntos
Infecções por Vírus de DNA/veterinária , Herbicidas/toxicidade , Ranavirus , Tartarugas/fisiologia , Tartarugas/virologia , Animais , Atrazina/toxicidade , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/mortalidade , Exposição Ambiental , Glicina/análogos & derivados , Glicina/toxicidade , Tartarugas/crescimento & desenvolvimento , Glifosato
6.
J Aquat Anim Health ; 33(1): 24-32, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590581

RESUMO

Populations of the eastern hellbender Cryptobranchus alleganiensis alleganiensis have been declining for decades, and emerging pathogens and pesticides are hypothesized to be contributing factors. However, few empirical studies have attempted to test the potential effects of these factors on hellbenders. We simultaneously exposed subadult hellbenders to environmentally relevant concentrations of either Batrachochytrium dendrobatidis (Bd) or a frog virus 3-like ranavirus (RV), a combination of the pathogens, or each pathogen following exposure to a glyphosate herbicide (Roundup). Additionally, we measured the ability of the skin mucosome to inactivate Bd and RV in growth assays. We found that mucosome significantly inactivated RV by an average of 40% but had no negative effects on Bd growth. All treatments that included RV exposure experienced reduced survival compared to controls, and the combination of RV and herbicide resulted in 100% mortality. Histopathology verified RV as the cause of mortality in all RV-exposed treatments. No animals were infected with Bd or died in the Bd-only treatment. Our results suggest that RV exposure may be a significant threat to the survival of subadult hellbenders and that Roundup exposure may potentially exacerbate this threat.


Assuntos
Infecções por Vírus de DNA/veterinária , Glicina/análogos & derivados , Herbicidas/administração & dosagem , Imunidade Inata , Micoses/veterinária , Urodelos/imunologia , Animais , Batrachochytrium/fisiologia , Infecções por Vírus de DNA/virologia , Glicina/administração & dosagem , Micoses/microbiologia , Ranavirus/fisiologia , Glifosato
7.
PLoS Pathog ; 17(2): e1009234, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600433

RESUMO

Environmental temperature is a key factor driving various biological processes, including immune defenses and host-pathogen interactions. Here, we evaluated the effects of environmental temperature on the pathogenicity of the emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal), using controlled laboratory experiments, and measured components of host immune defense to identify regulating mechanisms. We found that adult and juvenile Notophthalmus viridescens died faster due to Bsal chytridiomycosis at 14°C than at 6 and 22°C. Pathogen replication rates, total available proteins on the skin, and microbiome composition likely drove these relationships. Temperature-dependent skin microbiome composition in our laboratory experiments matched seasonal trends in wild N. viridescens, adding validity to these results. We also found that hydrophobic peptide production after two months post-exposure to Bsal was reduced in infected animals compared to controls, perhaps due to peptide release earlier in infection or impaired granular gland function in diseased animals. Using our temperature-dependent susceptibility results, we performed a geographic analysis that revealed N. viridescens populations in the northeastern United States and southeastern Canada are at greatest risk for Bsal invasion, which shifted risk north compared to previous assessments. Our results indicate that environmental temperature will play a key role in the epidemiology of Bsal and provide evidence that temperature manipulations may be a viable disease management strategy.


Assuntos
Batrachochytrium/patogenicidade , Micoses/imunologia , Notophthalmus viridescens/imunologia , Estações do Ano , Pele/imunologia , Animais , Micoses/epidemiologia , Micoses/microbiologia , Notophthalmus viridescens/microbiologia , Pele/microbiologia , Temperatura
8.
PLoS One ; 15(9): e0235370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915779

RESUMO

Controlled experiments are one approach to understanding the pathogenicity of etiologic agents to susceptible hosts. The recently discovered fungal pathogen, Batrachochytrium salamandrivorans (Bsal), has resulted in a surge of experimental investigations because of its potential to impact global salamander biodiversity. However, variation in experimental methodologies could thwart knowledge advancement by introducing confounding factors that make comparisons difficult among studies. Thus, our objective was to evaluate if variation in experimental methods changed inferences made on the pathogenicity of Bsal. We tested whether passage duration of Bsal culture, exposure method of the host to Bsal (water bath vs. skin inoculation), Bsal culturing method (liquid vs. plated), host husbandry conditions (aquatic vs. terrestrial), and skin swabbing frequency influenced diseased-induced mortality in a susceptible host species, the eastern newt (Notophthalmus viridescens). We found that disease-induced mortality was faster for eastern newts when exposed to a low passage isolate, when newts were housed in terrestrial environments, and if exposure to zoospores occurred via water bath. We did not detect differences in disease-induced mortality between culturing methods or swabbing frequencies. Our results illustrate the need to standardize methods among Bsal experiments. We provide suggestions for future Bsal experiments in the context of hypothesis testing and discuss the ecological implications of our results.


Assuntos
Quitridiomicetos/patogenicidade , Micoses/veterinária , Urodelos/microbiologia , Animais , Técnicas de Cultura de Células , Quitridiomicetos/isolamento & purificação , Quitridiomicetos/fisiologia , Micoses/microbiologia , Micoses/patologia , Pele/microbiologia , Pele/patologia , Coloração e Rotulagem , Urodelos/fisiologia
9.
Dis Aquat Organ ; 140: 1-11, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32618283

RESUMO

Discovered in 2013, the chytrid fungus Batrachochytrium salamandrivorans (Bsal) is an emerging amphibian pathogen that causes ulcerative skin lesions and multifocal erosion. A closely related pathogen, B. dendrobatidis (Bd), has devastated amphibian populations worldwide, suggesting that Bsal poses a significant threat to global salamander biodiversity. To expedite research into this emerging threat, we seek to standardize protocols across the field so that results of laboratory studies are reproducible and comparable. We have collated data and experience from multiple labs to standardize culturing practices of Bsal. Here we outline common culture practices including a medium for standardized Bsal growth, standard culturing protocols, and a method for isolating Bsal from infected tissue.


Assuntos
Quitridiomicetos , Micoses/veterinária , Anfíbios , Animais , Biodiversidade , Urodelos
10.
Sci Rep ; 10(1): 5584, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221329

RESUMO

Batrachochytrium salamandrivorans (Bsal) is an emerging invasive pathogen that is highly pathogenic to salamander species. Modeling infection dynamics in this system can facilitate proactive efforts to mitigate this pathogen's impact on North American species. Given its widespread distribution and high abundance, the eastern newt (Notophthalmus viridescens) has the potential to significantly influence Bsal epidemiology. We designed experiments to 1) estimate contact rates given different host densities and habitat structure and 2) estimate the probability of transmission from infected to susceptible individuals. Using parameter estimates from data generated during these experiments, we modeled infection and disease outcomes for a population of newts using a system of differential equations. We found that host contact rates were density-dependent, and that adding habitat structure reduced contacts. The probability of Bsal transmission given contact between newts was very high (>90%) even at early stages of infection. Our simulations show rapid transmission of Bsal among individuals following pathogen introduction, with infection prevalence exceeding 90% within one month and >80% mortality of newts in three months. Estimates of basic reproductive rate (R0) of Bsal for eastern newts were 1.9 and 3.2 for complex and simple habitats, respectively. Although reducing host density and increasing habitat complexity might decrease transmission, these management strategies may be ineffective at stopping Bsal invasion in eastern newt populations due to this species' hyper-susceptibility.


Assuntos
Quitridiomicetos/fisiologia , Salamandridae/microbiologia , Animais , Ecossistema , Micoses/microbiologia , Micoses/transmissão , Micoses/veterinária , Densidade Demográfica , Tennessee
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...