Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1456637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318426

RESUMO

Escherichia albertii is an emerging foodborne pathogen. We previously reported that some avian Shiga toxin-producing E. albertii strains exhibited higher or comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic E. coli (EHEC) outbreak strains. To better understand the environmental persistence of this pathogen, comparative genomics and phenotypic assays were applied to assess adhesion capability, motility, and biofilm formation in E. albertii. Among the 108 adherence-related genes, those involved in biogenesis of curli fimbriae, hemorrhagic E. coli pilus, type 1 fimbriae, and Sfm fimbriae were conserved in E. albertii. All 20 E. albertii strains carried a complete set of primary flagellar genes that were organized into four gene clusters, while five strains possessed genes related to the secondary flagella, also known as lateral flagella. Compared to EHEC strain EDL933, the eight chemotaxis genes located within the primary flagellar gene clusters were deleted in E. albertii. Additional deletion of motility genes flhABCD and motBC was identified in several E. albertii strains. Swimming motility was detected in three strains when grown in LB medium, however, when grown in 5% TSB or in the pond water-supplemented with 10% pigeon droppings, an additional four strains became motile. Although all E. albertii strains carried curli genes, curli fimbriae were detected only in four, eight, and nine strains following 24, 48, and 120 h incubation, respectively. Type 1 fimbriae were undetectable in any of the strains grown at 37°C or 28°C. Strong biofilms were detected in strains that produced curli fimbriae and in a chicken isolate that was curli fimbriae negative but carried genes encoding adhesive fimbriae K88, a signature of enterotoxigenic E. coli strains causing neonatal diarrhea in piglets. In all phenotypic traits examined, no correlation was revealed between the strains isolated from different sources, or between the strains with and without Shiga toxin genes. The phenotypic variations could not be explained solely by the genetic diversity or the difference in adherence genes repertoire, implying complex regulation in expression of various adhesins. Strains that exhibited a high level of cytotoxicity and were also proficient in biofilm production, may have potential to emerge into high-risk pathogens.

2.
Microorganisms ; 11(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38004814

RESUMO

Escherichia albertii is an emerging foodborne pathogen. To better understand the pathogenesis and health risk of this pathogen, comparative genomics and phenotypic characterization were applied to assess the pathogenicity potential of E. albertii strains isolated from wild birds in a major agricultural region in California. Shiga toxin genes stx2f were present in all avian strains. Pangenome analyses of 20 complete genomes revealed a total of 11,249 genes, of which nearly 80% were accessory genes. Both core gene-based phylogenetic and accessory gene-based relatedness analyses consistently grouped the three stx2f-positive clinical strains with the five avian strains carrying ST7971. Among the three Stx2f-converting prophage integration sites identified, ssrA was the most common one. Besides the locus of enterocyte effacement and type three secretion system, the high pathogenicity island, OI-122, and type six secretion systems were identified. Substantial strain variation in virulence gene repertoire, Shiga toxin production, and cytotoxicity were revealed. Six avian strains exhibited significantly higher cytotoxicity than that of stx2f-positive E. coli, and three of them exhibited a comparable level of cytotoxicity with that of enterohemorrhagic E. coli outbreak strains, suggesting that wild birds could serve as a reservoir of E. albertii strains with great potential to cause severe diseases in humans.

3.
Front Microbiol ; 14: 1214081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822735

RESUMO

Shiga toxin-producing Escherichia coli (STEC) consists of diverse strains differing in genetic make-up and virulence potential. To better understand the pathogenicity potential of STEC carried by the wildlife, three STEC and one E. coli strains isolated from wild birds near a major agricultural region in California were selected for comparative pathogenomic analyses. Three American crow (Corvus brachyrhynchos) strains, RM9088, RM9513, and RM10410, belonging to phylogroup A with serotypes O109:H48, O9:H30, and O113:H4, respectively, and a red-winged blackbird (Agelaius phoeniceus) strain RM14516 in phylogroup D with serotype O17:H18, were examined. Shiga toxin genes were identified in RM9088 (stx1a), RM10410 (stx1a + stx2d), and RM14516 (stx2a). Unlike STEC O157:H7 strain EDL933, none of the avian STEC strains harbored the pathogenicity islands OI-122, OI-57, and the locus of enterocyte effacement, therefore the type III secretion system biogenesis genes and related effector genes were absent in the three avian STEC genomes. Interestingly, all avian STEC strains exhibited greater (RM9088 and RM14516) or comparable (RM10410) cytotoxicity levels compared with EDL933. Comparative pathogenomic analyses revealed that RM9088 harbored numerous genes encoding toxins, toxins delivery systems, and adherence factors, including heat-labile enterotoxin, serine protease autotransporter toxin Pic, type VI secretion systems, protein adhesin Paa, fimbrial adhesin K88, and colonization factor antigen I. RM9088 also harbored a 36-Kb high pathogenicity island, which is related to iron acquisition and pathogenicity in Yersinia spp. Strain RM14516 carried an acid fitness island like the one in EDL933, containing a nine gene cluster involved in iron acquisition. Genes encoding extracellular serine protease EspP, subtilase cytotoxin, F1C fimbriae, and inverse autotransporter adhesin IatC were only detected in RM14516, and genes encoding serine protease autotransporter EspI and P fimbriae were only identified in RM10410. Although all curli genes were present in avian STEC strains, production of curli fimbriae was only detected for RM9088 and RM14516. Consistently, strong, moderate, and little biofilms were observed for RM9088, RM14516, and RM10410, respectively. Our study revealed novel combinations of virulence factors in two avian strains, which exhibited high level of cytotoxicity and strong biofilm formation. Comparative pathogenomics is powerful in assessing pathogenicity and health risk of STEC strains.

4.
Front Cell Infect Microbiol ; 12: 1043726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506028

RESUMO

Shiga toxin-producing Escherichia coli (STEC) O121 is among the top six non-O157 serogroups that are most frequently associated with severe disease in humans. While O121:H19 is predominant, other O121 serotypes have been frequently isolated from environmental samples, but their virulence repertoire is poorly characterized. Here, we sequenced the complete genomes of two animal isolates belonging to O121:H7 and O121:H10 and performed comparative genomic analysis with O121:H19 to assess their virulence potential. Both O121:H7 and O121:H10 strains carry a genome comparable in size with the O121:H19 genomes and belong to phylogroup B1. However, both strains appear to have evolved from a different lineage than the O121:H19 strains according to the core genes-based phylogeny and Multi Locus Sequence Typing. A systematic search of over 300 E. coli virulence genes listed in the Virulence Factor DataBase revealed a total of 73 and 71 in O121:H7 and O121:H10 strains, respectively, in comparison with an average of 135 in the O121:H19 strains. This variation in the virulence genes repertoire was mainly attributed to the reduction in the number of genes related to the Type III Secretion System in the O121:H7 and O121:H10 strains. Compared to the O121:H19 strains, the O121:H7 strain carries more adherence and toxin genes while the O121:H10 strain carries more genes related to the Type VI Secretion System. Although both O121:H7 and O121:H10 strains carry the large virulence plasmid pEHEC, they do not harbor all pEHEC virulence genes in O121:H19. Furthermore, unlike the O121:H19 strains, neither the O121:H7 nor O121:H10 strain carried the Locus of Enterocyte Effacement, OI-122, nor the tellurite resistance island. Although an incomplete Locus of Adhesion and Autoaggregation (LAA) was identified in the O121:H7 and O121:H10 strains, a limited number of virulence genes were present. Consistently, both O121:H7 and O121:H10 strains displayed significant reduced cytotoxicity than either the O157:H7 strain EDL933 or the O121:H19 strain RM8352. In fact, the O121:H7 strain RM8082 appeared to cause minimal cytotoxicity to Vero cells. Our study demonstrated distinct evolutionary lineages among the strains of serotypes O121:H19, O121:H10, and O121:H7 and suggested reduced virulence potentials in STEC strains of O121:H10 and O121:H7.


Assuntos
Toxina Shiga , Escherichia coli Shiga Toxigênica , Chlorocebus aethiops , Animais , Humanos , Tipagem de Sequências Multilocus , Células Vero , Genômica , Escherichia coli Shiga Toxigênica/genética
5.
Toxins (Basel) ; 14(11)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36356001

RESUMO

Antimicrobials have been important medicines used to treat various infections. However, some antibiotics increase the expression of Shiga toxin (Stx). Also, the pervasive use of persistent antibiotics has led to ecotoxicity and antibiotic resistance. In this study, a newly developed broad-spectrum and reversible antibiotic (guanylhydrazone disinfectant) was evaluated for its antibiotic activity and effects on Stx production and global transcription of bacteria. No Stx induction was observed in 25 Shiga toxin-producing E. coli (STEC) isolates treated with a sublethal concentration of the guanylhydrazone. A differential gene expression study comparing two guanylhydrazone-treated to non-treated E. coli strains indicated that the expression of a group of stress-responsive genes were enhanced. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that guanylhydrazone treatment significantly downregulated the pathways of ribosome and flagellar assembly in both pathogenic and non-pathogenic strains and differentially regulated some pathways essential for bacteria to maintain cell shape and gain survival advantage in two strains. In addition, upregulation of antibiotic resistant genes related to the multidrug efflux system and virulence genes coding for colibactin, colicin, and adhesin was observed in strains treated with the disinfectant. The knowledge obtained in this study contributes to our understanding of the mode of this disinfectant action and facilitates our effort to better use disinfectants for STEC treatments.


Assuntos
Desinfetantes , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Desinfetantes/farmacologia , Proteínas de Escherichia coli/genética , Fatores de Virulência/genética , Infecções por Escherichia coli/microbiologia , Toxina Shiga/genética , Antibacterianos/farmacologia
6.
Microorganisms ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630311

RESUMO

Shiga toxin-producing Escherichia coli (STEC) O145:H28 can cause severe disease in humans and is a predominant serotype in STEC O145 environmental isolates. Here, comparative genomics was applied to a set of clinical and environmental strains to systematically evaluate the pathogenicity potential in environmental strains. While the core genes-based tree separated all O145:H28 strains from the non O145:H28 reference strains, it failed to segregate environmental strains from the clinical. In contrast, the accessory genes-based tree placed all clinical strains in the same clade regardless of their genotypes or serotypes, apart from the environmental strains. Loss-of-function mutations were common in the virulence genes examined, with a high frequency in genes related to adherence, autotransporters, and the type three secretion system. Distinct differences in pathogenicity islands LEE, OI-122, and OI-57, the acid fitness island, and the tellurite resistance island were detected between the O145:H28 and reference strains. A great amount of genetic variation was detected in O145:H28, which was mainly attributed to deletions, insertions, and gene acquisition at several chromosomal "hot spots". Our study demonstrated a distinct virulence gene repertoire among the STEC O145:H28 strains originating from the same geographical region and revealed unforeseen contributions of loss-of-function mutations to virulence evolution and genetic diversification in STEC.

7.
Data Brief ; 36: 107065, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34307800

RESUMO

Shiga toxin-producing Escherichia coli (STEC) strain RM13514 is a clinical isolate linked to the 2010 romaine lettuce-associated outbreak in the U.S. The genes encoding a type II restriction and modification system, PstI R-M, are located in a prophage genome that is also encoding Shiga toxin. In-frame deletion of the PstI R-M genes or dam, encoding a DNA adenine methylase, in strain RM13514 were generated, resulting in two mutant strains MQC599 and MQC602, respectively. The mutant strain MQC599 exhibited a similar growth rate as the wild-type (WT) strain RM13514 when grown in Luria-Bertani (LB) broth at 37 °C. In contrast, the growth of mutant strain MQC602 was significantly slower than either RM13514 or MQC599. Genes transcriptionally regulated by the PstI R-M system or by Dam were examined by the RNA-Seq based comparative transcriptomics. The total RNA was extracted from cells of each strain grown in LB broth at exponential and stationary phases. Three biological replicates were collected for each strain. After removal of ribosomal RNA, the mRNAs were converted to cDNAs followed by Illumina sequence library construction. For strains RM13514 and MQC599, six libraires were generated for each, three from the cells in the exponential growth phase and three from the cells in the stationary phase. For strain MQC602, three additional libraries were constructed from the cells in the early exponential growth phase. The resulting 21 libraries were combined in equal amounts and sequenced on an Illumina HighSeq 2000 instrument with the Paired End 100 bp (PE100) read format, generating a total of 45.83 Gbp sequence reads. This set of sequence data is available in the NCBI SRA database under the BioProject accession number PRJNA684587. This set of transcriptomic data provides information on methylation-mediated epigenetic regulation in STEC, an important foodborne pathogen that is frequently associated with large epidemic outbreaks and can cause life-threatening disease in humans [1]. This set of data will be useful for researchers who are interested in physiology and pathogenicity of foodborne pathogens or in the fundamental mechanisms of epigenetic regulation in bacteria.

8.
Food Microbiol ; 96: 103722, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33494894

RESUMO

We previously reported a distinct methylome between the two Shiga toxin-producing Escherichia coli (STEC) O145:H28 strains linked to the 2010 U.S. lettuce-associated outbreak (RM13514) and the 2007 Belgium ice cream-associated outbreak (RM13516), respectively. This difference was thought to be attributed to a prophage encoded type II restriction-modification system (PstI R-M) in RM13514. Here, we characterized this PstI R-M system in comparison to DNA adenine methylase (Dam), a highly conserved enzyme in γ proteobacteria, by functional genomics. Deficiency in Dam led to a differential expression of over 1000 genes in RM13514, whereas deficiency in PstI R-M only impacted a few genes transcriptionally. Dam regulated genes involved in diverse functions, whereas PstI R-M regulated genes mostly encoding transporters and adhesins. Dam regulated a large number of genes located on prophages, pathogenicity islands, and plasmids, including Shiga toxin genes, type III secretion system (TTSS) genes, and enterohemolysin genes. Production of Stx2 in dam mutant was significantly higher than in RM13514, supporting a role of Dam in maintaining lysogeny of Stx2-prophage. However, following mitomycin C treatment, Stx2 in RM13514 was significantly higher than that of dam or PstI R-M deletion mutant, implying that both Dam and PstI R-M contributed to maximum Stx2 production.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Infecções por Escherichia coli/microbiologia , Prófagos/enzimologia , Escherichia coli Shiga Toxigênica/enzimologia , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Prófagos/genética , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Escherichia coli Shiga Toxigênica/virologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Proteínas Virais/genética , Virulência , Fatores de Virulência/metabolismo
9.
Int J Food Microbiol ; 339: 109029, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360585

RESUMO

Shiga toxin-producing Escherichia coli (STEC) O145 is a major serotype associated with severe human disease. Production of Shiga toxins (Stxs), especially Stx2a, is thought to be correlated with STEC virulence. Since stx genes are located in prophages genomes, induction of prophages is required for effective Stxs production. Here, we investigated the production of Stxs in 12 environmental STEC O145:H28 strains under stresses STEC encounter in natural habitats and performed comparative analysis with two O145:H28 clinical strains, one linked to a 2010 U.S. lettuce-associated outbreak (RM13514) and the other linked to a 2007 Belgium ice cream-associated outbreak (RM13516). Similar to the outbreak strains, all environmental strains belong to Sequence Type (ST)-78 using the EcMLST typing scheme. Although all Stx1a-prophages were grouped together, variations in Stx1a production were observed prior to or following the inductions. Among all stx2a positive environmental strains, only the Stx2a-prophage in cattle isolate RM9154-C1 was clustered with the Stx2a-prophages in RM13514, the Stx2a-phage induced from a STEC O104:H4 strain linked to the 2011 outbreak of enterohemorrhagic infection in Germany, and the Stx2a-prophage in STEC O157:H7 strain EDL933, a prototype of enterohemorrhagic E. coli. Furthermore, the Stx2a-prophage in RM9154-C1 shared the same chromosomal insertion site and carried the same antiterminator Q gene and the late promoter PR' as the Stx2a-prophage in RM13514. Following mitomycin C or enrofloxacin treatment, the production of Stx2a in RM9154-C1 was the highest among all environmental strains tested. In contrast, following acid challenge and recovery, the production of Stx2a in RM9154-C1 was the lowest among all the environmental strains tested, at a level comparable to the clinical strains. A significant increase in Stx2a production was detected in all strains when exposed to H2O2, although the induction fold was much lower than those by other inducers. This low-efficiency induction of Stx-prophages by H2O2, a natural inducer of Stx-prophages, supports the hypothesis of bacterial altruism in controlling Stxs production, a strategy that assures the survival of the STEC population as a whole by sacrificing a small fraction of cells for Stxs production and release. Differential induction of Stxs among strains carrying nearly identical Stx-prophages suggests a role of host bacteria in regulating Stxs production. Our study revealed diverse Stx-prophages in STEC O145:H28 strains that were genotypically indistinguishable. Identification of a cattle isolate harboring a Stx2a-prophage associated with high virulence supports the premise that cattle, a natural reservoir of STEC, serve as a source of hypervirulent STEC strains.


Assuntos
Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/genética , Animais , Bacteriófagos/genética , Bélgica , Bovinos , Surtos de Doenças , Escherichia coli Êntero-Hemorrágica , Microbiologia Ambiental , Infecções por Escherichia coli/microbiologia , Genoma , Genótipo , Alemanha , Humanos , Peróxido de Hidrogênio , Prófagos/genética , Sorogrupo , Toxina Shiga/genética , Toxina Shiga II/genética , Virulência
10.
Foodborne Pathog Dis ; 17(9): 555-567, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32130019

RESUMO

Shiga toxin-producing Escherichia coli (STEC) consists of a group of diverse strains differing greatly in genetic make-up and pathogenicity potential. Here, we investigated production of Shiga toxins (Stxs) in a bovine isolate carrying multiple Shiga toxin genes (stxs) after exposure to several antibiotics commonly used in food animals. Strain RM10809-C3 was co-isolated with a STEC O145:H28 strain from cattle feces near a leafy greens-growing region in California. The genome of RM10809-C3 is composed of a 5,128,479-bp chromosome and a 122,641-bp plasmid, encoding 5108 coding sequences. Strain RM10809-C3 belongs to serotype O22:H8 and is clustered together with two STEC O168:H8 food isolates using either multilocus sequence type or core genome-based phylogenetic analysis. Six intact prophages were identified in the genome of RM10809-C3, among which prophage 4 contained two sets of stx2d; whereas prophage 9 carried one set of stx1a. Increased production of Stx1 was detected in RM10809-C3 after exposure to mitomycin C and enrofloxacin, but not in cells exposed to tetracycline. In contrast, Stx2 remained undetectable in cells treated with any of the antibiotics examined. Comparison of Stx-converting prophages in strain RM10809-C3 with those in strain EDL933 revealed altered stx2 promoters in RM10809-C3, including deletion of the late promoter PR' and the mutations in qut, the binding site of antitermination protein Q. In contrast, both PR' and qut within the promoter of stx1 in RM10809-C3 were identical to the corresponding one in EDL933. Further, the protein Q encoded by Stx1-prophage in RM10809-C3 exhibited >94% identity with either of the two EDL933 protein Q; whereas both protein Q encoded by Stx2-prophage in RM10809-C3 were distantly related to any of the EDL933 protein Q. Natural silence of Stx2 production in strain RM10809-C3 emphasizes that not only the stx coding regions but also their regulatory factors are important in STEC risk assessment.


Assuntos
Toxina Shiga II/biossíntese , Escherichia coli Shiga Toxigênica/genética , Animais , Antibacterianos/farmacologia , California , Bovinos , Fezes , Genoma Bacteriano , Filogenia , Plasmídeos , Regiões Promotoras Genéticas , Prófagos , Toxina Shiga I , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Virulência
11.
Food Microbiol ; 84: 103241, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421768

RESUMO

Bacterial persistence is a form of phenotypic heterogeneity in which a subpopulation, persisters, has high tolerance to antibiotics and other stresses. Persisters of enteric pathogens may represent the subpopulations capable of surviving harsh environments and causing human infections. Here we examined the persister populations of several shiga toxin-producing Escherichia coli (STEC) outbreak strains under conditions relevant to leafy greens production. The persister fraction of STEC in exponential-phase of culture varied greatly among the strains examined, ranging from 0.00003% to 0.0002% for O157:H7 strains to 0.06% and 0.08% for STEC O104:H4 strains. A much larger persister fraction (0.1-11.2%) was observed in STEC stationary cells grown in rich medium, which was comparable to the persister fractions in stationary cells grown in spinach lysates (0.6-3.6%). The highest persister fraction was measured in populations of cells incubated in field water (9.9-23.2%), in which no growth was detected for any of the STEC strains examined. Considering the high tolerance of persister cells to antimicrobial treatments and their ability to revert to normal cells, the presence of STEC persister cells in leafy greens production environments may pose a significant challenge in the development of effective control strategies to ensure the microbial safety of fresh vegetables.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Microbiologia de Alimentos , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento , Verduras/microbiologia , Inocuidade dos Alimentos , Fatores de Virulência
12.
Food Microbiol ; 82: 482-488, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027809

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is one of the most common causal agents of foodborne illness linked to fresh leafy vegetables. Here, we investigated the impact of spinach-associated microorganisms on proliferation and biofilm formation of STEC O157:H7 on stainless steel surfaces at temperatures related to produce production and postharvest processing environments. Although a proliferation of inoculated pathogen cells in spinach leaf wash water was detected at all temperatures examined, the impact of spinach-associated microorganisms on the proliferation of E. coli O157:H7 was observed at 10 °C and 26 °C, but not at 4 °C. The inhibition of E. coli O157:H7 growth by spinach-associated microorganisms indicated a competition between the pathogen and spinach indigenous microflora. A significant decrease of the pathogen population in mixed biofilms was observed only at 26 °C for curli-deficient strain MQC43, but not for curli-expressing strain MQC57. Deletion of curli genes in a curli-expressing strain resulted in a phenotype similar to that of MQC43 in mixed biofilms; however, this deficiency was rescued when curli biogenesis was restored in the curli-deletion mutant strain. Our data support that curli confer E. coli O157:H7 a competitive trait in mixed biofilms, presumably through the interaction between STEC and the biofilm-proficient microorganisms associated with spinach leaves.


Assuntos
Biofilmes , Proteínas de Escherichia coli/fisiologia , Microbiologia de Alimentos , Escherichia coli Shiga Toxigênica/fisiologia , Spinacia oleracea/microbiologia , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Escherichia coli O157/genética , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Interações Microbianas , Microbiota/fisiologia , Mutação , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento , Aço Inoxidável , Temperatura
13.
Foodborne Pathog Dis ; 16(6): 384-393, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848674

RESUMO

Shiga toxin-producing Escherichia coli (STEC) serotype O121:H19 is one of the major non-O157:H7 serotypes associated with severe human disease. Here we examined population structure, virulence potential, and metabolic profile of environmental STEC O121 strains recovered from a major produce production region in California and performed comparative analyses with STEC O121 clinical isolates. Multilocus sequence typing revealed that sequence type (ST)-655, a common ST in clinical strains, was the predominant genotype among the environmental strains. Phylotyping placed all STEC O121 strains in B1 group, a lineage containing other major non-O157 serogroups of STEC. Genes encoding different subtypes of Shiga toxin 1 and 2 were detected in O121, including stx1a, stx1d, stx2a, and stx2e. Furthermore, genes encoding intimin (eae) and enterohemolysin (ehxA) were detected in a majority of environmental strains (83.3%), suggesting that the majority of environmental STEC O121 strains are enterohemorrhagic E. coli. The STEC O121 strains with the same genotype were clustered together based on the carbon utilization pattern. Among the 122 carbon substrates that supported the growth of STEC O121 strains, 44 and 35 exhibited lineage (ST) and strain-specific metabolic profiles, respectively. Although clinical ST-655 strains displayed higher metabolic activity than environmental ST-655 strains for several carbon substrates, including l-alaninamide, 5-keto-d-gluconic acid, 3-O-ß-d-galactopyranosyl-d-arabinose, α-ketoglutaric acid, and lactulose, a few environmental strains with the enhanced metabolic potential for the above substrates were detected. Variations in curli biogenesis and swimming motility were also observed in ST-655 strains, suggesting that phenotypic variants are widespread in STEC. Considering the ecological niches that STEC colonizes, increased metabolic potential for plant-derived carbohydrates, mucus-derived substrates, or secondary metabolites produced by the indigenous microorganisms might have been selected. Such traits would confer STEC competitive advantages and facilitate survival and adaptation of STEC population to a given niche, including infected humans.


Assuntos
Microbiologia de Alimentos , Escherichia coli Shiga Toxigênica/isolamento & purificação , Verduras/microbiologia , Animais , California , Humanos , Filogenia , Toxina Shiga I/genética , Toxina Shiga I/metabolismo , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade
14.
Genome Announc ; 6(19)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748413

RESUMO

Escherichia coli O145 strains RM14715 and RM14723 were isolated from wildlife feces near a leafy greens-growing region in Yuma, Arizona. Both strains carry a distinct genotype compared with the E. coli O145 strains isolated from Salinas Valley, California. Here we report complete genome sequences and annotations of RM14715 and RM14723.

15.
Genome Announc ; 6(16)2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674560

RESUMO

Escherichia coli O145:H11 strain RM14721 was originally isolated from wildlife feces near a leafy greens-growing region in Yuma, AZ. This strain was initially positive for stx1; however, in subsequent cultures, stx1 was not detected by PCR. Here, we report the complete genome sequence and annotation of RM14721.

16.
Food Microbiol ; 72: 199-205, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29407398

RESUMO

We examined the survival of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica Thompson inoculated on commercially packed table grapes under simulated refrigerated transit conditions (1.1 ± 0.5 °C; 90% RH). Grapes were placed in perforated polyethylene cluster bags, within a commercial expanded polystyrene box equipped with either a SO2-generating pad; a perforated polyethylene box liner; a SO2-generating pad and a box liner; or none of them. L. monocytogenes was most sensitive to SO2-generating pad. SO2-generating pad or SO2-generating pad with box liner inactivated this pathogen completely on day 12 following the inoculation. S. enterica Thompson displayed a similar cold sensitivity as L. monocytogenes, but was more resistant to SO2-generating pad than L. monocytogenes. While SO2-generating pad eliminated S. enterica Thompson on day 20, a combination of box liner with SO2-generating pad inactivated this pathogen completely on day 13. E. coli O157:H7 had the highest tolerance to transit temperature and to SO2-generating pad; SO2-generating pad inactivated this pathogen completely on Day 20. Our data suggest that use of SO2-generating pad combined with box liner is effective in reducing foodborne pathogens L. monocytogenes and S. enterica Thompson, while the use of SO2-generating pad alone was more effective on E. coli O157:H7.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Listeria monocytogenes/crescimento & desenvolvimento , Salmonella enterica/crescimento & desenvolvimento , Vitis/microbiologia , Contagem de Colônia Microbiana , Embalagem de Alimentos , Frutas/química , Frutas/microbiologia , Refrigeração , Temperatura , Vitis/química
17.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054868

RESUMO

Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 supershedder strain SS17, a large deletion results in a smaller coding sequence, encoding a protein lacking the C-terminal 71 amino acids compared with Cah in STEC O157:H7 strain EDL933. We examined the function of Cah in biofilm formation and host colonization to better understand the selective pressures for cah mutations. EDL933-Cah played a conditional role in biofilm formation in vitro: it enhanced E. coli DH5α biofilm formation on glass surfaces under agitated culture conditions that prevented autoaggregation but inhibited biofilm formation under hydrostatic conditions that facilitated autoaggregation. This function appeared to be strain dependent since Cah-mediated biofilm formation was diminished when an EDL933 cah gene was expressed in SS17. Deletion of cah in EDL933 enhanced bacterial attachment to spinach leaves and altered the adherence pattern of EDL933 to bovine recto-anal junction squamous epithelial (RSE) cells. In contrast, in trans expression of EDL933 cah in SS17 increased its attachment to leaf surfaces, and in DH5α, it enhanced its adherence to RSE cells. Hence, the ecological function of Cah appears to be modulated by environmental conditions and other bacterial strain-specific properties. Considering the prevalence of cah in STEC and its role in attachment and biofilm formation, cah mutations might be selected in ecological niches in which inactivation of Cah would result in an increased fitness in STEC during colonization of plants or animal hosts.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) harbors genes encoding diverse adhesins, and many of these are known to play an important role in bacterial attachment and host colonization. We demonstrated here that the autotransporter protein Cah confers on E. coli DH5α cells a strong autoaggregative phenotype that is inversely correlated with its ability to form biofilms and plays a strain-specific role in plant and animal colonization by STEC. Although cah is widespread in the STEC population, we detected a mutation rate of 31.3% in cah, which is similar to that reported for rpoS and fimH The formation of cell aggregates due to increased bacterium-to-bacterium interactions may be disadvantageous to bacterial populations under conditions that favor a planktonic state in STEC. Therefore, a loss-of-function mutation in cah is likely a selective trait in STEC when autoaggregative properties become detrimental to bacterial cells and may contribute to the adaptability of STEC to fluctuating environments.


Assuntos
Proteínas de Escherichia coli/genética , Mutação , Escherichia coli Shiga Toxigênica/fisiologia , Canal Anal/microbiologia , Animais , Bovinos , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Folhas de Planta/microbiologia , Reto/microbiologia , Escherichia coli Shiga Toxigênica/genética , Spinacia oleracea/microbiologia
18.
Genome Announc ; 5(37)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912313

RESUMO

Enterobacter cloacae strain M12X01451 was isolated from a patient with mild diarrhea. This strain produces a novel subtype of Shiga toxin 1, Stx1e. The Stx1e-converting prophage in strain M12X01451 is stable and can infect other bacteria following induction. Here we report the complete genome sequence and annotation of strain M12X01451.

19.
Trends Microbiol ; 25(1): 6-8, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27919552

RESUMO

Shiga toxin-producing Escherichia coli O157:H7 primarily resides in cattle asymptomatically, and can be transmitted to humans through food. A study by Lupolova et al. applied a machine-learning approach to complex pan-genome information and predicted that only a small subset of bovine isolates have the potential to cause diseases in humans.


Assuntos
Infecções por Escherichia coli/transmissão , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Proteínas de Escherichia coli/genética , Fosfoproteínas/genética , Toxina Shiga/metabolismo , Animais , Bovinos , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/metabolismo , Microbiologia de Alimentos , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Humanos , Fatores de Virulência/genética
20.
Food Microbiol ; 57: 81-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27052705

RESUMO

Several species of enteric pathogens produce curli fimbriae, which may affect their interaction with surfaces and other microbes in nonhost environments. Here we used two Escherichia coli O157:H7 outbreak strains with distinct genotypes to understand the role of curli in surface attachment and biofilm formation in several systems relevant to fresh produce production and processing. Curli significantly enhanced the initial attachment of E. coli O157:H7 to spinach leaves and stainless steel surfaces by 5-fold. Curli was also required for E. coli O157:H7 biofilm formation on stainless steel and enhanced biofilm production on glass by 19-27 fold in LB no-salt broth. However, this contribution was not observed when cells were grown in sterile spinach lysates. Furthermore, both strains of E. coli O157:H7 produced minimal biofilms on polypropylene in LB no-salt broth but considerable amounts in spinach lysates. Under the latter conditions, curli appeared to slightly increase biofilm production. Importantly, curli played an essential role in the formation of mixed biofilm by E. coli O157:H7 and plant-associated microorganisms in spinach leaf washes, as revealed by confocal microscopy. Little or no E. coli O157:H7 biofilms were detected at 4 °C, supporting the importance of temperature control in postharvest and produce processing environments.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Biofilmes , Escherichia coli O157/fisiologia , Spinacia oleracea/microbiologia , Proteínas de Bactérias/genética , Escherichia coli O157/genética , Folhas de Planta/microbiologia , Aço Inoxidável/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...