RESUMO
The ventral midline thalamus, including the reuniens and rhomboid (ReRh) nuclei, connects bidirectionally with the medial prefrontal cortex (mPFC) and hippocampus (Hip), both essential for memory processes. This review compiles and discusses studies on a role for the ReRh nuclei in the system consolidation of memories, also considering their potentially limited participation in memory retrieval or early phases of consolidation. It also examines scientific literature on short- and long-term plasticity in ReRh-mPFC and ReRh-Hip connections, emphasizing plasticity's importance in understanding these nuclei's role in memory. The idea that the two nuclei are at the crossroads of information exchange between the mPFC and the Hip is not new, but the relationship between this status and the plasticity of their connections remains elusive. Since this perspective is relatively recent, our concluding section suggests conceptual and practical avenues for future research, aiming perhaps to bring more order to the apparently multi-functional implication of the ventral midline thalamus in cognition.
RESUMO
BACKGROUND: Dementia with Lewy bodies (DLB) is the second most common age-related neurocognitive pathology after Alzheimer's disease. Animal models characterizing this disease are lacking and their development would ameliorate both the understanding of neuropathological mechanisms underlying DLB as well as the efficacy of pre-clinical studies tackling this disease. METHODS: We performed extensive phenotypic characterization of a transgenic mouse model overexpressing, most prominently in the dorsal hippocampus (DH) and frontal cortex (FC), wild-type form of the human α-synuclein gene (mThy1-hSNCA, 12 to 14-month-old males). Moreover, we drew a comparison of our mouse model results to DH- and FC- dependent neuropsychological and neuropathological deficits observed in a cohort of patients including 34 healthy control subjects and 55 prodromal-DLB patients (males and females). RESULTS: Our study revealed an increase of pathological form of soluble α-synuclein, mainly in the FC and DH of the mThy1-hSNCA model. However, functional impairment as well as increase in transcripts of inflammatory markers and decrease in plasticity-relevant protein level were exclusive to the FC. Furthermore, we did not observe pathophysiological or Tyrosine Hydroxylase alterations in the striatum or substantia nigra, nor motor deficits in our model. Interestingly, the results stemming from the cohort of prodromal DLB patients also demonstrated functional deficits emanating from FC alterations, along with preservation of those usually related to DH dysfunctions. CONCLUSIONS: This study demonstrates that pathophysiological impairment of the FC with concomitant DH preservation is observed at an early stage of DLB, and that the mThy1-hSNCA mouse model parallels some markers of this pathology.
Assuntos
Modelos Animais de Doenças , Doença por Corpos de Lewy , Camundongos Transgênicos , Sintomas Prodrômicos , alfa-Sinucleína , Animais , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/genética , Camundongos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Masculino , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Idoso , Idoso de 80 Anos ou mais , Hipocampo/metabolismo , Hipocampo/patologiaRESUMO
The reuniens (Re) nucleus is located in the ventral midline thalamus. It has fostered increasing interest, not only for its participation in a variety of cognitive functions (e.g., spatial working memory, systemic consolidation, reconsolidation, extinction of fear or generalization), but also for its neuroanatomical positioning as a bidirectional relay between the prefrontal cortex (PFC) and the hippocampus (HIP). In this review we compile and discuss recent studies having tackled a possible implication of the Re nucleus in behavioral flexibility, a major PFC-dependent executive function controlling goal-directed behaviors. Experiments considered explored a possible role for the Re nucleus in perseveration, reversal learning, fear extinction, and set-shifting. They point to a contribution of this nucleus to behavioral flexibility, mainly by its connections with the PFC, but possibly also by those with the hippocampus, and even with the amygdala, at least for fear-related behavior. As such, the Re nucleus could be a crucial crossroad supporting a PFC-orchestrated ability to cope with new, potentially unpredictable environmental contingencies, and thus behavioral flexibility and adaption.
Assuntos
Núcleos da Linha Média do Tálamo , Animais , Núcleos da Linha Média do Tálamo/fisiologia , Humanos , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Extinção Psicológica/fisiologia , Hipocampo/fisiologia , Função Executiva/fisiologiaRESUMO
Aging is the main risk factor of cognitive neurodegenerative diseases such as Alzheimer's disease, with epigenome alterations as a contributing factor. Here, we compared transcriptomic/epigenomic changes in the hippocampus, modified by aging and by tauopathy, an AD-related feature. We show that the cholesterol biosynthesis pathway is severely impaired in hippocampal neurons of tauopathic but not of aged mice pointing to vulnerability of these neurons in the disease. At the epigenomic level, histone hyperacetylation was observed at neuronal enhancers associated with glutamatergic regulations only in the tauopathy. Lastly, a treatment of tau mice with the CSP-TTK21 epi-drug that restored expression of key cholesterol biosynthesis genes counteracted hyperacetylation at neuronal enhancers and restored object memory. As acetyl-CoA is the primary substrate of both pathways, these data suggest that the rate of the cholesterol biosynthesis in hippocampal neurons may trigger epigenetic-driven changes, that may compromise the functions of hippocampal neurons in pathological conditions.
Assuntos
Doença de Alzheimer , Colesterol , Hipocampo , Camundongos Transgênicos , Neurônios , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Hipocampo/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Neurônios/metabolismo , Camundongos , Epigenômica , Epigênese Genética , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo , Envelhecimento/genética , Masculino , Proteínas tau/metabolismo , Proteínas tau/genéticaRESUMO
BACKGROUND: The thalamic reuniens (Re) and rhomboid (Rh) nuclei are bidirectionally connected with the medial prefrontal cortex (mPFC) and the hippocampus (Hip). Fiber-sparing N-methyl-D-aspartate lesions of the ReRh disrupt cognitive functions, including persistence of certain memories. Because such lesions irremediably damage neurons interconnecting the ReRh with the mPFC and the Hip, it is impossible to know if one or both pathways contribute to memory persistence. Addressing such an issue requires selective, pathway-restricted and direction-specific disconnections. NEW METHOD: A recent method associates a retrograde adeno-associated virus (AAV) expressing Cre recombinase with an anterograde AAV expressing a Cre-dependent caspase, making such disconnection feasible by caspase-triggered apoptosis when both constructs meet intracellularly. We injected an AAVrg-Cre-GFP into the ReRh and an AAV5-taCasp into the mPFC. As expected, part of mPFC neurons died, but massive neurotoxicity of the AAVrg-Cre-GFP was found in ReRh, contrasting with normal density of DAPI staining. Other stainings demonstrated increasing density of reactive astrocytes and microglia in the neurodegeneration site. COMPARISON WITH EXISTING METHODS: Reducing the viral titer (by a 4-fold dilution) and injection volume (to half) attenuated toxicity substantially, still with evidence for partial disconnection between mPFC and ReRh. CONCLUSIONS: There is an imperative need to verify potential collateral damage inherent in this type of approach, which is likely to distort interpretation of experimental data. Therefore, controls allowing to distinguish collateral phenotypic effects from those linked to the desired disconnection is essential. It is also crucial to know for how long neurons expressing the Cre-GFP protein remain operational post-infection.
Assuntos
Dependovirus , Tálamo , Ratos , Animais , Dependovirus/genética , Tálamo/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Neurônios , Caspases/farmacologia , Vias Neurais/fisiologiaRESUMO
Cytoplasmic mislocalization of the nuclear Fused in Sarcoma (FUS) protein is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS accumulation is recapitulated in the frontal cortex and spinal cord of heterozygous Fus∆NLS/+ mice. Yet, the mechanisms linking FUS mislocalization to hippocampal function and memory formation are still not characterized. Herein, we show that in these mice, the hippocampus paradoxically displays nuclear FUS accumulation. Multi-omic analyses showed that FUS binds to a set of genes characterized by the presence of an ETS/ELK-binding motifs, and involved in RNA metabolism, transcription, ribosome/mitochondria and chromatin organization. Importantly, hippocampal nuclei showed a decompaction of the neuronal chromatin at highly expressed genes and an inappropriate transcriptomic response was observed after spatial training of Fus∆NLS/+ mice. Furthermore, these mice lacked precision in a hippocampal-dependent spatial memory task and displayed decreased dendritic spine density. These studies shows that mutated FUS affects epigenetic regulation of the chromatin landscape in hippocampal neurons, which could participate in FTD/ALS pathogenic events. These data call for further investigation in the neurological phenotype of FUS-related diseases and open therapeutic strategies towards epigenetic drugs.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Cromatina/metabolismo , Epigênese Genética , Demência Frontotemporal/genética , Hipocampo/metabolismo , Mutação , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismoRESUMO
Molecular mechanisms underlying cognitive deficits in Huntington's disease (HD), a striatal neurodegenerative disorder, are unknown. Here, we generated ChIPseq, 4Cseq and RNAseq data on striatal tissue of HD and control mice during striatum-dependent egocentric memory process. Multi-omics analyses showed altered activity-dependent epigenetic gene reprogramming of neuronal and glial genes regulating striatal plasticity in HD mice, which correlated with memory deficit. First, our data reveal that spatial chromatin re-organization and transcriptional induction of BDNF-related markers, regulating neuronal plasticity, were reduced since memory acquisition in the striatum of HD mice. Second, our data show that epigenetic memory implicating H3K9 acetylation, which established during late phase of memory process (e.g. during consolidation/recall) and contributed to glia-mediated, TGFß-dependent plasticity, was compromised in HD mouse striatum. Specifically, memory-dependent regulation of H3K9 acetylation was impaired at genes controlling extracellular matrix and myelination. Our study investigating the interplay between epigenetics and memory identifies H3K9 acetylation and TGFß signaling as new targets of striatal plasticity, which might offer innovative leads to improve HD.
Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/genética , Acetilação , Modelos Animais de Doenças , Corpo Estriado , Fator de Crescimento Transformador betaRESUMO
Working memory (WM) is a function operating in three successive phases: encoding (sample trial), holding (delay), and retrieval (test trial) of information. Studies point to a possible implication of the thalamic reuniens nucleus (Re) in spatial WM (SWM). In which of the aforementioned 3 phases the Re has a function is largely unknown. Recently, in a delayed SWM water-escape task, we found that performance during the retrieval trial correlated positively with c-Fos expression in the Re nucleus, suggesting participation in retrieval. Here, we used the same task and muscimol (MUSC) inhibition or DREADD(hM4Di)-mediated inhibition of the Re during information encoding, right thereafter (thereby affecting the holding phase), or during the retrieval trial. A 6-hour delay separated encoding from retrieval. Concerning SWM, MUSC in the Re nucleus did not alter performance, be it during or after encoding, or during evaluation. CNO administered before encoding in DREADD-expressing rats was also ineffective, although CNO-induced inhibition disrupted set shifting performance, as found previously (Quet et al., Brain Struct Function 225, 2020), thereby validating DREADD efficiency. These findings are the first that do not support an implication of the Re nucleus in SWM. As most previous studies used T-maze alternation tasks, which carry high proactive interference risks, an important question to resolve now is whether the Re nucleus is required in (T-maze alternation) tasks using very short information-holding delays (seconds to minutes), and less so in other short-term spatial memory tasks with longer information holding intervals (hours) and therefore reduced interference risks.
Assuntos
Memória de Curto Prazo , Água , Animais , Aprendizagem em Labirinto , Memória de Curto Prazo/fisiologia , Muscimol/farmacologia , Ratos , Memória Espacial/fisiologia , Tálamo , Água/farmacologiaRESUMO
Using a partial hippocampal cholinergic denervation model, we assessed the effects of the RGTA® named OTR4132, a synthetic heparan-mimetic biopolymer with neuroprotective/neurotrophic properties. Long-Evans male rats were injected with the cholinergic immunotoxin 192 IgG-saporin into the medial septum/diagonal band of Broca (0.37 µg); vehicle injections served as controls. Immediately after surgery, OTR4132 was injected into the lateral ventricles (0.25 µg/5 µl/rat) or intramuscularly (1.5 mg/kg). To determine whether OTR4132 reached the lesion site, some rats received intracerebroventricular (ICV) or intramuscular (I.M.) injections of fluorescent OTR4132. Rats were sacrificed at 4, 10, 20, or 60 days post-lesion (DPL). Fluorescein-labeled OTR4132 injected ICV or I.M. was found in the lesion from 4 to 20 DPL. Rats with partial hippocampal cholinergic denervation showed decreases in hippocampal acetylcholinesterase reaction products and in choline acetyltransferase-positive neurons in the medial septum. These lesions were the largest at 10 DPL and then remained stable until 60 DPL. Both hippocampal acetylcholinesterase reaction products and choline acetyltransferase-positive neurons in the medial septum effects were significantly attenuated in OTR4132-treated rats. These effects were not related to competition between OTR4132 and 192 IgG-saporin for the neurotrophin receptor P75 (p75NTR), as OTR4132 treatment did not alter the internalization of Cy3-labelled 192 IgG. OTR4132 was more efficient at reducing the acetylcholinesterase reaction products and choline acetyltransferase-positive neurons than a comparable heparin dose used as a comparator. Using the slice superfusion technique, we found that the lesion-induced decrease in muscarinic autoreceptor sensitivity was abolished by intramuscular OTR4132. After partial cholinergic damage, OTR4132 was able to concentrate at the brain lesion site possibly due to the disruption of the blood-brain barrier and to exert structural and functional effects that hold promises for neuroprotection/neurotrophism.
Assuntos
Acetilcolinesterase , Glicosaminoglicanos , Animais , Colinérgicos/farmacologia , Glicosaminoglicanos/farmacologia , Masculino , Ratos , Ratos Long-Evans , Proteínas Inativadoras de Ribossomos Tipo 1RESUMO
The reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are bi-directionally connected with the hippocampus and the medial prefrontal cortex. They participate in a variety of cognitive functions, including information holding for seconds to minutes in working memory tasks. What about longer delays? To address this question, we used a spatial working memory task in which rats had to reach a platform submerged in water. The platform location was changed every 2-trial session and rats had to use allothetic cues to find it. Control rats received training in a typical response-memory task. We interposed a 6 h interval between instruction (locate platform) and evaluation (return to platform) trials in both tasks. After the last session, rats were killed for c-Fos imaging. A home-cage group was used as additional control of baseline levels of c-Fos expression. C-Fos expression was increased to comparable levels in the Re (not Rh) of both spatial memory and response-memory rats as compared to their home cage counterparts. However, in spatial memory rats, not in their response-memory controls, task performance was correlated with c-Fos expression in the Re: the higher this expression, the better the performance. Furthermore, we noticed an activation of hippocampal region CA1 and of the anteroventral nucleus of the rostral thalamus. This activation was specific to spatial memory. The data point to a possible performance-determinant participation of the Re nucleus in the delayed engagement of spatial information encoded in a temporary memory.
Assuntos
Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Memória Espacial/fisiologia , Tálamo/metabolismo , Animais , Cognição , Masculino , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Long-EvansRESUMO
Microglia play a critical role in maintaining neural function. While microglial activity follows a circadian rhythm, it is not clear how this intrinsic clock relates to their function, especially in stimulated conditions such as in the control of systemic energy homeostasis or memory formation. In this study, we found that microglia-specific knock-down of the core clock gene, Bmal1, resulted in increased microglial phagocytosis in mice subjected to high-fat diet (HFD)-induced metabolic stress and likewise among mice engaged in critical cognitive processes. Enhanced microglial phagocytosis was associated with significant retention of pro-opiomelanocortin (POMC)-immunoreactivity in the mediobasal hypothalamus in mice on a HFD as well as the formation of mature spines in the hippocampus during the learning process. This response ultimately protected mice from HFD-induced obesity and resulted in improved performance on memory tests. We conclude that loss of the rigorous control implemented by the intrinsic clock machinery increases the extent to which microglial phagocytosis can be triggered by neighboring neurons under metabolic stress or during memory formation. Taken together, microglial responses associated with loss of Bmal1 serve to ensure a healthier microenvironment for neighboring neurons in the setting of an adaptive response. Thus, microglial Bmal1 may be an important therapeutic target for metabolic and cognitive disorders with relevance to psychiatric disease.
Assuntos
Fatores de Transcrição ARNTL , Dieta Hiperlipídica , Memória , Microglia , Obesidade , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Ritmo Circadiano/fisiologia , Dieta Hiperlipídica/efeitos adversos , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Hipocampo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/prevenção & controle , Fagocitose/fisiologia , Pró-Opiomelanocortina/metabolismo , Estresse Fisiológico/fisiologiaRESUMO
Over the past twenty years, the reuniens and rhomboid (ReRh) nuclei, which constitute the ventral midline thalamus, have received constantly growing attention. Since our first review article about the functional contributions of ReRh nuclei (Cassel et al., 2013), numerous (>80) important papers have extended anatomical knowledge, including at a developmental level, introduced new and very original electrophysiological insights on ReRh functions, and brought novel results on cognitive and non-cognitive implications of the ReRh. The current review will cover these recent articles, more on Re than on Rh, and their contribution will be approached according to their affiliation with work before 2013. These neuroanatomical, electrophysiological or behavioral findings appear coherent and point to the ReRh nuclei as two major components of a multistructural system supporting numerous cognitive (and non-cognitive) functions. They gate the flow of information, perhaps especially from the medial prefrontal cortex to the hippocampus and back, and coordinate activity and processing across these two (and possibly other) brain regions of major cognitive relevance.
Assuntos
Hipocampo , Núcleos da Linha Média do Tálamo , Animais , Cognição , Humanos , Vias Neurais , Ratos , Ratos Long-Evans , TálamoRESUMO
The most distant roots of neuroanatomy trace back to antiquity, with the first human dissections, but no document which would identify the thalamus as a brain structure has reached us. Claudius Galenus (Galen) gave to the thalamus the name 'thalamus nervorum opticorum', but later on, other names were used (e.g., anchae, or buttocks-like). In 1543, Andreas Vesalius provided the first quality illustrations of the thalamus. During the 19th century, tissue staining techniques and ablative studies contributed to the breakdown of the thalamus into subregions and nuclei. The next step was taken using radiomarkers to identify connections in the absence of lesions. Anterograde and retrograde tracing methods arose in the late 1960s, supporting extension, revision, or confirmation of previously established knowledge. The use of the first viral tracers introduced a new methodological breakthrough in the mid-1970s. Another important step was supported by advances in neuroimaging of the thalamus in the 21th century. The current review follows the history of the thalamus through these technical revolutions from Antiquity to the present day.
Assuntos
Neuroanatomia , Tálamo , Encéfalo , História do Século XX , Humanos , Conhecimento , NeuroimagemRESUMO
The consolidation of declarative memories is believed to occur mostly during sleep and involves a dialogue between two brain regions, the hippocampus and the medial prefrontal cortex. The information encoded during experience by neuronal assemblies is replayed during sleep leading to the progressive strengthening and integration of the memory trace in the prefrontal cortex. The gradual transfer of information from the hippocampus to the medial prefrontal cortex for long-term storage requires the synchronization of cortico-hippocampal networks by different oscillations, like ripples, spindles, and slow oscillations. Recent studies suggest the involvement of a third partner, the nucleus reuniens, in memory consolidation. Its bidirectional connections with the hippocampus and medial prefrontal cortex place the reuniens in a key position to relay information between the two structures. Indeed, many topical works reveal the original role that the nucleus reuniens occupies in different recent and remote memories consolidation. This review aimed to examine these contributions, as well as its functional embedment in this complex memory network, and provide some insights on the possible mechanisms.
Assuntos
Consolidação da Memória , Hipocampo , Humanos , Memória de Longo Prazo , Núcleos da Linha Média do Tálamo , Vias Neurais , Córtex Pré-FrontalRESUMO
Temporal dynamics and mechanisms underlying epigenetic changes in Huntington's disease (HD), a neurodegenerative disease primarily affecting the striatum, remain unclear. Using a slowly progressing knockin mouse model, we profile the HD striatal chromatin landscape at two early disease stages. Data integration with cell type-specific striatal enhancer and transcriptomic databases demonstrates acceleration of age-related epigenetic remodelling and transcriptional changes at neuronal- and glial-specific genes from prodromal stage, before the onset of motor deficits. We also find that 3D chromatin architecture, while generally preserved at neuronal enhancers, is altered at the disease locus. Specifically, we find that the HD mutation, a CAG expansion in the Htt gene, locally impairs the spatial chromatin organization and proximal gene regulation. Thus, our data provide evidence for two early and distinct mechanisms underlying chromatin structure changes in the HD striatum, correlating with transcriptional changes: the HD mutation globally accelerates age-dependent epigenetic and transcriptional reprogramming of brain cell identities, and locally affects 3D chromatin organization.
Assuntos
Envelhecimento , Montagem e Desmontagem da Cromatina/genética , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Doença de Huntington/genética , Doenças Neurodegenerativas/genética , Animais , Comportamento Animal/fisiologia , Cromatina/genética , Corpo Estriado/citologia , Corpo Estriado/fisiopatologia , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina/genética , Doença de Huntington/diagnóstico , Doença de Huntington/fisiopatologia , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Expansão das Repetições de Trinucleotídeos/genéticaRESUMO
Our previous studies consistently showed that MDMA-induced locomotor hyperactivity is dramatically increased by coadministration of ethanol (EtOH) in rats, indicating possible potentiation of MDMA abuse liability. Thus, we aimed to identify the brain region(s) and neuropharmacological substrates involved in the pharmacodynamics of this potentiation. We first showed that potentiation of locomotor activity by the combination of ip administration of EtOH (1.5 g/kg) and MDMA (6.6 mg/kg) is delay sensitive and maximal when both drugs are injected simultaneously. Then, we used the 2-deoxyglucose quantitative autoradiography technique to assess the impact of EtOH, MDMA, or their combination on local cerebral metabolic rates for glucose (CMRglcs). We showed a specific metabolic activation in the ventral striatum (VS) under MDMA + EtOH versus MDMA or EtOH alone. We next tested if reversible (tetrodotoxin, TTX) or permanent (6-hydrodoxyopamine, 6-OHDA) lesion of the VS could affect locomotor response to MDMA and MDMA + EtOH. Finally, we blocked dopamine D1 or glutamate NMDA receptors in the VS and measured the effects of MDMA and MDMA + EtOH on locomotor activity. We showed that bilateral reversible inactivation (TTX) or permanent lesion (6-OHDA) of the VS prevented the potentiation by EtOH of MDMA-induced locomotor hyperactivity. Likewise, blockade of D1 or NMDA receptors in the VS also reduced the potentiation of MDMA locomotor activity by EtOH. These data indicate that dopamine D1 and glutamate NMDA receptor-driven mechanisms in the VS play a key role in the pharmacodynamics of EtOH-induced potentiation of the locomotor effects of MDMA.
Assuntos
Etanol/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Estriado Ventral/efeitos dos fármacos , Animais , Combinação de Medicamentos , Sinergismo Farmacológico , Etanol/administração & dosagem , Locomoção/efeitos dos fármacos , Masculino , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Oxidopamina/farmacologia , Ratos , Ratos Long-Evans , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tetrodotoxina/farmacologiaRESUMO
Microglia are brain immune cells responsible for immune surveillance. Microglial activation is, however, closely associated with neuroinflammation, neurodegeneration, and obesity. Therefore, it is critical that microglial immune response appropriately adapts to different stressors. The circadian clock controls the cellular process that involves the regulation of inflammation and energy hemostasis. Here, we observed a significant circadian variation in the expression of markers related to inflammation, nutrient utilization, and antioxidation in microglial cells isolated from mice. Furthermore, we found that the core clock gene-Brain and Muscle Arnt-like 1 (Bmal1) plays a role in regulating microglial immune function in mice and microglial BV-2 cells by using quantitative RT-PCR. Bmal1 deficiency decreased gene expression of pro-inflammatory cytokines, increased gene expression of antioxidative and anti-inflammatory factors in microglia. These changes were also observed in Bmal1 knock-down microglial BV-2 cells under lipopolysaccharide (LPS) and palmitic acid stimulations. Moreover, Bmal1 deficiency affected the expression of metabolic associated genes and metabolic processes, and increased phagocytic capacity in microglia. These findings suggest that Bmal1 is a key regulator in microglial immune response and cellular metabolism.
Assuntos
Fatores de Transcrição ARNTL/imunologia , Relógios Circadianos/fisiologia , Microglia/imunologia , Microglia/metabolismo , Fatores de Transcrição ARNTL/deficiência , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos KnockoutRESUMO
BACKGROUND: CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. RESULTS: We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. CONCLUSIONS: These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms.
Assuntos
Proteína de Ligação a CREB/genética , Ritmo Circadiano/genética , Memória de Longo Prazo , Domínios Proteicos , Animais , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Feminino , Masculino , CamundongosRESUMO
According to the standard theory of memory consolidation, recent memories are stored in the hippocampus before their transfer to cortical modules, a process called systemic consolidation. The ventral midline thalamus (reuniens and rhomboid nuclei, ReRh) takes part in this transfer as its lesion disrupts systemic consolidation of spatial and contextual fear memories. Here, we wondered whether ReRh lesions would also affect the systemic consolidation of another type of memory, namely an olfaction-based social memory. To address this question we focused on social transmission of food preference. Adult Long-Evans rats were subjected to N-methyl-d-aspartate-induced, fibre-sparing lesions of the ReRh nuclei or to a sham-operation, and subsequently trained in a social transmission of food preference paradigm. Retrieval was tested on the next day (recent memory, nSham = 10, nReRh = 12) or after a 25-day delay (remote memory, nSham = 10, nReRh = 10). All rats, whether sham-operated or subjected to ReRh lesions, learned and remembered the task normally, whatever the delay. Compared to our former results on spatial and contextual fear memories (Ali et al., 2017; Klein et al., 2019; Loureiro et al., 2012; Quet et al., 2020), the present findings indicate that the ReRh nuclei might not be part of a generic, systemic consolidation mechanism processing all kinds of memories in order to make them persistent. The difference between social transmission of food preference and spatial or contextual fear memories could be explained by the fact that social transmission of food preference is not hippocampus-dependent and that the persistence of social transmission of food preference memory relies on different circuits.