Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 34(4): e2971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581136

RESUMO

Climate change is increasing the frequency of droughts and the risk of severe wildfires, which can interact with shrub encroachment and browsing by wild ungulates. Wild ungulate populations are expanding due, among other factors, to favorable habitat changes resulting from land abandonment or land-use changes. Understanding how ungulate browsing interacts with drought to affect woody plant mortality, plant flammability, and fire hazard is especially relevant in the context of climate change and increasing frequency of wildfires. The aim of this study is to explore the combined effects of cumulative drought, shrub encroachment, and ungulate browsing on the fire hazard of Mediterranean oak woodlands in Portugal. In a long-term (18 years) ungulate fencing exclusion experiment that simulated land abandonment and management neglect, we investigated the population dynamics of the native shrub Cistus ladanifer, which naturally dominates the understory of woodlands and is browsed by ungulates, comparing areas with (no fencing) and without (fencing) wild ungulate browsing. We also modeled fire behavior in browsed and unbrowsed plots considering drought and nondrought scenarios. Specifically, we estimated C. ladanifer population density, biomass, and fuel load characteristics, which were used to model fire behavior in drought and nondrought scenarios. Overall, drought increased the proportion of dead C. ladanifer shrub individuals, which was higher in the browsed plots. Drought decreased the ratio of live to dead shrub plant material, increased total fuel loading, shrub stand flammability, and the modeled fire parameters, that is, rate of surface fire spread, fireline intensity, and flame length. However, total fuel load and fire hazard were lower in browsed than unbrowsed plots, both in drought and nondrought scenarios. Browsing also decreased the population density of living shrubs, halting shrub encroachment. Our study provides long-term experimental evidence showing the role of wild ungulates in mitigating drought effects on fire hazard in shrub-encroached Mediterranean oak woodlands. Our results also emphasize that the long-term effects of land abandonment can interact with climate change drivers, affecting wildfire hazard. This is particularly relevant given the increasing incidence of land abandonment.


Assuntos
Secas , Florestas , Quercus , Incêndios Florestais , Animais , Quercus/fisiologia , Portugal , Incêndios , Cervos/fisiologia , Cistaceae/fisiologia , Dinâmica Populacional , Mudança Climática , Herbivoria
2.
Physiol Plant ; 175(5): e14017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882257

RESUMO

Calcium biomineralisation is widely documented in plants. However, crystallisation of Ca-sulphate-containing minerals is closely related to water content, and sample processing, such as drying, alters the water balance of plant tissues. We hypothesised that common sample processing practices may favour the formation of crystals, leading to spurious crystallisation not observed in unaltered plant tissues. We selected three species (Ononis tridentata, Helianthemum squamatum and Gypsophila struthium) with reported gypsum biomineralisation. We used x-ray diffractometry on fresh intact or sliced leaves, and on the same leaves processed by subsequent drying, to address whether sample processing alters crystal formation. Ca-sulphate crystals were detected in dry samples of all species but not in fresh intact samples. Ca-sulphate crystallisation occurred in some cut fresh samples, although the accumulation greatly increased after drying. In addition, G. struthium exhibited Ca-oxalate crystals in both fresh and dry treatments, with a tendency for greater accumulation in dry treatments. Our results demonstrate that the Ca-sulphate crystals observed by x-ray diffractometry in these species are artefacts caused by common sample processing practices, such as excessive drying and slicing samples. We encourage future studies on the biomineral potential of plants to avoid the use of procedures that alter the water balance of tissues.


Assuntos
Artefatos , Sulfato de Cálcio , Plantas/química , Sulfatos , Manejo de Espécimes , Água , Cálcio
3.
AoB Plants ; 15(4): plad041, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37448861

RESUMO

Gypsum soils are amongst the most widespread extreme substrates of the world, occurring in 112 countries. This type of hypercalcic substrate has a suite of extreme physical and chemical properties that make it stressful for plant establishment and growth. Extreme chemical properties include low plant-available nitrogen and phosphorus and high plant-available sulphur and calcium, which impose strong nutritional imbalances on plants. In spite of these edaphic barriers, gypsum soils harbour rich endemic floras that have evolved independently on five continents, with highly specialized species. Plants that only grow on gypsum are considered soil specialists, and they have a foliar elemental composition similar to the elemental availability of gypsum soils, with high calcium, sulphur and magnesium accumulation. However, the physiological and ecological role of the unique foliar elemental composition of gypsum specialists remains poorly understood, and it is unknown whether it provides an ecological advantage over other generalist species on gypsum soils. This article reviews available literature on the impact of gypsum soil features on plant life and the mechanisms underlying plant adaptation to gypsum environments. We conclude with a hypothesis on the potential role of the nutritional strategy underlying plant specialization to gypsum soils: Gypsum specialists primarily use SO42- as a counter anion to tolerate high Ca2+ concentrations in cells and avoid phosphorus depletion, which is one of the most limiting nutrients in gypsum soils.

4.
New Phytol ; 235(6): 2406-2423, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704043

RESUMO

The analysis of plant elemental composition and the underlying factors affecting its variation are a current hot topic in ecology. Ecological adaptation to atypical soils may shift plant elemental composition. However, no previous studies have evaluated its relevance against other factors such as phylogeny, climate or individual soil conditions. We evaluated the effect of the phylogeny, environment (climate, soil), and affinity to gypsum soils on the elemental composition of 83 taxa typical of Iberian gypsum ecosystems. We used a new statistical procedure (multiple phylogenetic variance decomposition, MPVD) to decompose total explained variance by different factors across all nodes in the phylogenetic tree of target species (covering 120 million years of Angiosperm evolution). Our results highlight the relevance of phylogeny on the elemental composition of plants both at early (with the development of key preadaptive traits) and recent divergence times (diversification of the Iberian gypsum flora concurrent with Iberian gypsum deposit accumulation). Despite the predominant phylogenetic effect, plant adaptation to gypsum soils had a strong impact on the elemental composition of plants, particularly on sulphur concentrations, while climate and soil effects were smaller. Accordingly, we detected a convergent evolution of gypsum specialists from different lineages on increased sulphur and magnesium foliar concentrations.


Assuntos
Sulfato de Cálcio , Ecossistema , Filogenia , Plantas/genética , Solo , Enxofre
5.
Physiol Plant ; 174(4): e13738, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35765177

RESUMO

Extreme soils often have mineral nutrient imbalances compared to plant nutritional requirements and co-occur in open areas where grazers thrive. Thus, plants must respond to both constraints, which can affect nutrient concentrations in all plant organs. Gypsum soil provides an excellent model system to study adaptations to extreme soils under current grazing practices as it harbours two groups of plant species that differ in their tolerance to gypsum soils and foliar composition. However, nutrient concentrations in organs other than leaves, and their individual responses to simulated herbivory, are still unknown in gypsum plants. We studied plant biomass, root mass ratio and nutrient partitioning among different organs (leaves, stems, coarse roots, fine roots) in five gypsum endemics and five generalists cultivated in gypsum and calcareous soils and subjected to different levels of simulated browsing. Gypsum endemics tended to have higher elemental concentration in leaves, stems and coarse roots than generalist species in both soil types, whereas both groups tended to show similar high concentrations in fine roots. This behaviour was especially clear with sulphur (S), which is found in excess in gypsum soils, and which endemics accumulated in leaves as sulphate (>50% of S). Moreover, plants subjected to clipping, regardless of their affinity to gypsum, were unable to compensate for biomass losses and showed similar elemental composition to unclipped plants. The accumulation of excess mineral nutrients by endemic species in aboveground organs may be a constitutive nutritional strategy in extreme soils and is potentially playing an anti-herbivore role in grazed gypsum outcrops.


Assuntos
Sulfato de Cálcio , Solo , Nutrientes , Folhas de Planta , Raízes de Plantas , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...