Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400802, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966899

RESUMO

The removal of oil from solid surfaces, such as textiles and plates, remains a challenge due to the strong binding affinity of the oil. Conventional methods for surface cleaning often require surfactants and mechanical abrasion to enhance the cleaning process. However, in excess, these can pose adverse effects on the environment and to the material. This study investigated how bulk nanobubble water can clean oil microdroplets deposited on surfaces like glass coverslips and dishes. Microscopy imaging and further image analysis clearly revealed that these microdroplets detached from both hydrophobic and hydrophilic surfaces when washed with bulk nanobubble water within a fluidic microchannel. Oil contaminant cleaning was also conducted in water as mobile phase to mimic the circumstances that occur in a dishwasher and washing machine. Cleaning on a larger scale also proved very successful in the removal of oil from a porcelain bowl. These results indicate that nanobubble water can easily remove oil contaminants from glass and porcelain surfaces without the assistance of surfactants. This is in stark contrast to negligible results obtained with a control solution without nanobubbles. This study indicates that nanobubble technology is an innovative, low-cost, eco-friendly approach for oil removal, demonstrating its potential for broad practical applications.

2.
Biomed Microdevices ; 26(2): 24, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709370

RESUMO

We report the fabrication and characterisation of magnetic liquid beads with a solid magnetic shell and liquid core using microfluidic techniques. The liquid beads consist of a fluorinated oil core and a polymer shell with magnetite particles. The beads are generated in a flow-focusing polydimethylsiloxane (PDMS) device and cured by photo polymerisation. We investigated the response of the liquid beads to an external magnetic field by characterising their motion towards a permanent magnet. Magnetic sorting of liquid beads in a channel was achieved with 90% efficiency. The results show that the liquid beads can be controlled magnetically and have potential applications in digital microfluidics including nucleic acid amplification, drug delivery, cell culture, sensing, and tissue engineering. The present paper also discusses the magnetophoretic behaviour of the liquid bead by varying its mass and magnetite concentration in the shell. We also demonstrated the two-dimensional self-assembly of magnetic liquid beads for potential use in digital polymerase chain reaction and digital loop mediated isothermal amplification.


Assuntos
Dimetilpolisiloxanos , Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas/instrumentação , Campos Magnéticos , Microesferas
3.
Lab Chip ; 24(8): 2146-2175, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38507292

RESUMO

Flexible and stretchable microdevices incorporate highly deformable structures, facilitating precise functionality at the micro- and millimetre scale. Flexible microdevices have showcased extensive utility in the fields of biomedicine, microfluidics, and soft robotics. Actuation plays a critical role in transforming energy between different forms, ensuring the effective operation of devices. However, when it comes to actuating flexible microdevices at the small millimetre or even microscale, translating actuation mechanisms from conventional rigid large-scale devices is not straightforward. The recent development of actuation mechanisms leverages the benefits of device flexibility, particularly in transforming conventional actuation concepts into more efficient approaches for flexible devices. Despite many reviews on soft robotics, flexible electronics, and flexible microfluidics, a specific and systematic review of the actuation mechanisms for flexible and stretchable microdevices is still lacking. Therefore, the present review aims to address this gap by providing a comprehensive overview of state-of-the-art actuation mechanisms for flexible and stretchable microdevices. We elaborate on the different actuation mechanisms based on fluid pressure, electric, magnetic, mechanical, and chemical sources, thoroughly examining and comparing the structure designs, characteristics, performance, advantages, and drawbacks of these diverse actuation mechanisms. Furthermore, the review explores the pivotal role of materials and fabrication techniques in the development of flexible and stretchable microdevices. Finally, we summarise the applications of these devices in biomedicine and soft robotics and provide perspectives on current and future research.

4.
Nanoscale ; 16(7): 3560-3570, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38289397

RESUMO

Manipulation, focusing, and separation of submicron- and nanoparticles such as extracellular vesicles (EVs), viruses and bacteria have broad applications in disease diagnostics and therapeutics. Viscoelastic microfluidic technology emerges as a promising technique, and it shows an unparalleled capacity to manipulate and separate submicron particles in a high resolution based on the elastic effects of non-Newtonian mediums. The maximum particle separation resolution for the reported state-of-the-art viscoelastic microfluidics is around 200 nm. To further enhance the reseparation resolution, this work develops a viscoelastic microfluidic device that can achieve a finer separation resolution up to 100 nm, by optimising the operating conditions such as flow rate, flow rate ratio and polyethylene oxide (PEO) concentration. With these optimised conditions, we separated a ternary mixture of 100 nm, 200 nm and 500 nm polystyrene particles, with purities above 90%, 70% and 82%, respectively. Furthermore, we also applied the developed viscoelastic microfluidic device for the separation of cancer cell-secreted extracellular vesicles (EVs) into three different size groups. After single processing, the separation efficiencies for small EVs (sEVs, <150 nm), medium EVs (mEVs, 150-300 nm), and large EVs (>300 nm) were 86%, 80% and 50%, respectively. The enrichment factors for the three EV groups were 2.4, 1.1 and 1.3, respectively. Moreover, we observed an unexpected effect of high PEO concentrations (2000-5000 ppm) on the lateral migration of nanoparticles where nanoparticles of up to 50 nm surprisingly can migrate and concentrate at the middle of the microchannel. This simple and label-free viscoelastic microfluidic device possesses excellent potential for sorting submicron particles for various chemical, biological, medical and environmental applications.


Assuntos
Vesículas Extracelulares , Microfluídica , Polietilenoglicóis , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...