RESUMO
Chronic hand and wrist pain is a common presenting complaint. The intricate anatomy results in a variety of pain generators-multiple bones, articular cartilage, intrinsic ligaments, triangular fibrocartilage complex, joint capsules and synovium, tendons and tendon sheaths, muscles, and nerves-in a compact space. The need for imaging and the choice of the appropriate imaging modality are best determined by the patient's presentation, physical examination, and the clinician's working differential diagnosis. Radiography is usually appropriate as the initial imaging study in the evaluation of chronic hand or wrist pain. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Assuntos
Dor Crônica , Medicina Baseada em Evidências , Sociedades Médicas , Humanos , Dor Crônica/diagnóstico por imagem , Estados Unidos , Mãos/diagnóstico por imagem , Diagnóstico Diferencial , Artralgia/diagnóstico por imagemRESUMO
BACKGROUND: For patients with liver-confined metastatic colorectal cancer (mCRC), local therapy of isolated metastases has been associated with long-term progression-free and overall survival (OS). However, for patients with more advanced mCRC, including those with extrahepatic disease, the efficacy of local therapy is less clear although increasingly being used in clinical practice. Prospective studies to clarify the role of metastatic-directed therapies in patients with mCRC are needed. METHODS: The Evaluating Radiation, Ablation, and Surgery (ERASur) A022101/NRG-GI009 trial is a randomized, National Cancer Institute-sponsored phase III study evaluating if the addition of metastatic-directed therapy to standard of care systemic therapy improves OS in patients with newly diagnosed limited mCRC. Eligible patients require a pathologic diagnosis of CRC, have BRAF wild-type and microsatellite stable disease, and have 4 or fewer sites of metastatic disease identified on baseline imaging. Liver-only metastatic disease is not permitted. All metastatic lesions must be amenable to total ablative therapy (TAT), which includes surgical resection, microwave ablation, and/or stereotactic ablative body radiotherapy (SABR) with SABR required for at least one lesion. Patients without overt disease progression after 16-26 weeks of first-line systemic therapy will be randomized 1:1 to continuation of systemic therapy with or without TAT. The trial activated through the Cancer Trials Support Unit on January 10, 2023. The primary endpoint is OS. Secondary endpoints include event-free survival, adverse events profile, and time to local recurrence with exploratory biomarker analyses. This study requires a total of 346 evaluable patients to provide 80% power with a one-sided alpha of 0.05 to detect an improvement in OS from a median of 26 months in the control arm to 37 months in the experimental arm with a hazard ratio of 0.7. The trial uses a group sequential design with two interim analyses for futility. DISCUSSION: The ERASur trial employs a pragmatic interventional design to test the efficacy and safety of adding multimodality TAT to standard of care systemic therapy in patients with limited mCRC. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05673148, registered December 21, 2022.
Assuntos
Neoplasias do Colo , Neoplasias Hepáticas , Radiocirurgia , Neoplasias Retais , Humanos , Estudos Prospectivos , Radiocirurgia/métodos , Neoplasias Hepáticas/terapiaRESUMO
Background: Behçet's syndrome (BS) is a rare multi-systemic vasculitis of unknown aetiology. Fibromyalgia syndrome (FMS) is more prevalent in rheumatological conditions such-as BS, than the general population. However, there is limited research into the aetiology and characteristics of pain in BS. Objectives: To describe the pain characteristics and incidence of FMS in people with BS and investigate their relationship with BS disease activity. Methods: A cohort study of BS patients attending the Liverpool Behçet's Centre between February 2017 and March 2019. BS was defined using the International Study Group Criteria. BS severity was assessed using the Behçet's Disease Current Activity Form. FMS was determined from consultant diagnosis. Assessments of pain included: Pain Visual Analogue Scale (PVAS), Pain Mannequin, Brief Pain Inventory, EQ-5D-3L and Short Form McGill. Pain and FMS prevalence were compared between high and low disease activity. Results: 90% reported moderate-severe pain with a median PVAS score of 68/100 [38, 81]. 35.6% of participants had FMS and 46.5% experienced generalized pain. 76% of participants with high disease activity reported severe pain, compared to 39.1% with low disease activity (p = .003). Pain was more generalised in high disease activity (72%) compared to low disease activity (37.7%) (p = .003). FMS was more prevalent in the high disease activity group (52%) than the low disease activity group (29%) (p = .04). Conclusions: This is the first study to explore pain in participants with BS in the United Kingdom. The majority of BS patients experience moderate-severe widespread pain. Severe widespread pain is more prevalent in those with high disease activity. We have demonstrated a relationship between high disease activity, worse pain intensity, and FMS. This paper contributes to the understanding of two conditions which remain to be fully understood, FMS and BS, and generates new hypotheses to describe the interplay between.
RESUMO
We report a resonant cavity infrared detector (RCID) with an InAsSb/InAs superlattice absorber with a thickness of only ≈ 100â nm, a 33-period GaAs/Al0.92Ga0.08As distributed Bragg reflector bottom mirror, and a Ge/SiO2/Ge top mirror. At a low bias voltage of 150â mV, the external quantum efficiency (EQE) reaches 58% at the resonance wavelength λres ≈ 4.6â µm, with linewidth δλ = 19-27â nm. The thermal background current for a realistic system scenario with f/4 optic that views a 300â K scene is estimated by integrating the photocurrent generated by background spanning the entire mid-IR spectral band (3-5â µm). The resulting specific detectivity is a factor of 3 lower than for a state-of-the-art broadband HgCdTe device at 300â K, where dark current dominates the noise. However, at 125â K where the suppression of background noise becomes critical, the estimated specific detectivity D* of 5.5 × 1012â cm Hz½/W is more than 3× higher. This occurs despite a non-optimal absorber cut-off that causes the EQE to decrease rapidly with decreasing temperature, e.g., to 33% at 125â K. The present RCID's advantage over the broadband device depends critically on its low EQE at non-resonance wavelengths: ≤ 1% in the range 3.9-5.5â µm. Simulations using NRL MULTIBANDS indicate that impact ionization in the bottom contact and absorber layers dominates the dark current at near ambient temperatures. We expect future design modifications to substantially enhance D* throughout the investigated temperature range of 100-300â K.
RESUMO
As the immuno-oncology field continues the rapid growth witnessed over the past decade, optimising patient outcomes requires an evolution in the current response-assessment guidelines for phase 2 and 3 immunotherapy clinical trials and clinical care. Additionally, investigational tools-including image analysis of standard-of-care scans (such as CT, magnetic resonance, and PET) with analytics, such as radiomics, functional magnetic resonance agents, and novel molecular-imaging PET agents-offer promising advancements for assessment of immunotherapy. To document current challenges and opportunities and identify next steps in immunotherapy diagnostic imaging, the National Cancer Institute Clinical Imaging Steering Committee convened a meeting with diverse representation among imaging experts and oncologists to generate a comprehensive review of the state of the field.
Assuntos
Neoplasias , Estados Unidos , Humanos , National Cancer Institute (U.S.) , Imunoterapia , Processamento de Imagem Assistida por Computador , OncologiaRESUMO
BACKGROUND: Totally endoscopic ear surgery is a novel method of conducting otological surgery. Hierarchical task analysis and the systematic human error reduction and prediction approach ('SHERPA') are valuable tools that can effectively deconstruct the technical and non-technical skills required to successfully complete a surgical procedure. METHODS: Twenty-five endoscopic tragal cartilage tympanoplasties were observed, to identify the tasks and subtasks required for completion of totally endoscopic tragal cartilage tympanoplasty. The systematic human error reduction and prediction approach was used to identify the potential risks and methods, to reduce or remediate these risks. RESULTS: A hierarchical task analysis was performed, identifying 8 tasks and 50 subtasks for a safe approach to completing totally endoscopic tragal cartilage tympanoplasty. A risk score for each subtask was calculated to produce a systematic human error reduction and prediction approach and to highlight potential errors. CONCLUSION: This hierarchical task analysis allowed for quick reference to a correct method of endoscopic tympanoplasty. The systematic human error reduction and prediction approach was employed to reduce the risks associated with undergoing endoscopic tympanoplasty, to improve patient safety.
Assuntos
Cartilagem , Timpanoplastia , Humanos , Timpanoplastia/métodos , Resultado do Tratamento , Estudos Retrospectivos , Endoscopia/métodosRESUMO
Background: For patients with liver-confined metastatic colorectal cancer (mCRC), local therapy of isolated metastases has been associated with long-term progression-free and overall survival (OS). However, for patients with more advanced mCRC, including those with extrahepatic disease, the efficacy of local therapy is less clear although increasingly being used in clinical practice. Prospective studies to clarify the role of metastatic-directed therapies in patients with mCRC are needed. Methods: The Evaluating Radiation, Ablation, and Surgery (ERASur) A022101/NRG-GI009 trial is a randomized, National Cancer Institute-sponsored phase III study evaluating if the addition of metastatic-directed therapy to standard of care systemic therapy improves OS in patients with newly diagnosed limited mCRC. Eligible patients require a pathologic diagnosis of CRC, have BRAF wild-type and microsatellite stable disease, and have 4 or fewer sites of metastatic disease identified on baseline imaging. Liver-only metastatic disease is not permitted. All metastatic lesions must be amenable to total ablative therapy (TAT), which includes surgical resection, microwave ablation, and/or stereotactic ablative body radiotherapy (SABR) with SABR required for at least one lesion. Patients without overt disease progression after 16-26 weeks of first-line systemic therapy will be randomized 1:1 to continuation of systemic therapy with or without TAT. The trial activated through the Cancer Trials Support Unit on January 10, 2023. The primary endpoint is OS. Secondary endpoints include event-free survival, adverse events profile, and time to local recurrence with exploratory biomarker analyses. This study requires a total of 346 evaluable patients to provide 80% power with a one-sided alpha of 0.05 to detect an improvement in OS from a median of 26 months in the control arm to 37 months in the experimental arm with a hazard ratio of 0.7. The trial uses a group sequential design with two interim analyses for futility. Discussion: The ERASur trial employs a pragmatic interventional design to test the efficacy and safety of adding multimodality TAT to standard of care systemic therapy in patients with limited mCRC.
RESUMO
Abdominopelvic hernias are common clinical entities composed of a wide variety of congenital, traumatic, and iatrogenic etiologies. Any weakness in the body wall may result in hernia of cavity contents with concomitant risks of morbidity and mortality. Presentations may be specific, palpable body wall mass/bulge, or vague, nonspecific pain through bowel obstruction. This document focuses on initial imaging of the adult population with signs of symptoms prompting suspicion of abdominopelvic hernia. Imaging of the abdomen and pelvis to evaluate defects is essential for prompt diagnosis and treatment. Often CT and ultrasound are the first-line modalities to quickly evaluate the abdomen and pelvis, providing for accurate diagnoses and management of patients. MRI protocols may be useful as first-line imaging studies, especially in patients with orthopedic instrumentation. Although often performed, abdominal radiographs and fluorographic procedures may provide indirect evidence of hernias but are usually not indicated for initial diagnosis of hernia. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer-reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances in which peer-reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Assuntos
Meios de Contraste , Sociedades Médicas , Humanos , Medicina Baseada em Evidências , Imageamento por Ressonância Magnética/métodos , HérniaRESUMO
Epigastric pain can have multiple etiologies including myocardial infarction, pancreatitis, acute aortic syndromes, gastroesophageal reflux disease, esophagitis, peptic ulcer disease, gastritis, duodenal ulcer disease, gastric cancer, and hiatal hernia. This document focuses on the scenarios in which epigastric pain is accompanied by symptoms such as heartburn, regurgitation, dysphagia, nausea, vomiting, and hematemesis, which raise suspicion for gastroesophageal reflux disease, esophagitis, peptic ulcer disease, gastritis, duodenal ulcer disease, gastric cancer, or hiatal hernia. Although endoscopy may be the test of choice for diagnosing these entities, patients may present with nonspecific or overlapping symptoms, necessitating the use of imaging prior to or instead of endoscopy. The utility of fluoroscopic imaging, CT, MRI, and FDG-PET for these indications are discussed. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Assuntos
Medicina Baseada em Evidências , Sociedades Médicas , Dor Abdominal , Fluoroscopia , Humanos , Imageamento por Ressonância Magnética , Estados UnidosRESUMO
The high-quality growth of midwave infrared light emitters on silicon substrates will advance their incorporation into photonic integrated circuits, and also introduce manufacturing advantages over conventional devices grown on lattice-matched GaSb. Here we report interband cascade light emitting devices (ICLEDs) grown on 4 degree offcut silicon with 12% lattice mismatch. Four wafers produced functioning devices, with variations from wafer to wafer but uniform performance of devices from a given wafer. The full width at half maxima for the (004) GaSb rocking curves were as narrow as â¼ 163 arc seconds, and the root mean square surface roughness as small as 3.2â nm. Devices from the four wafers, as well as from a control structure grown to the same design on GaSb, were mounted epitaxial-side-up (epi-up). While core heating severely limited continuous wave (cw) emission from the control devices at relatively modest currents, efficient heat dissipation via the substrate allowed output from the devices on silicon to increase up to much higher currents. Although the devices on silicon had higher leakage currents, probably occurring primarily at dislocations resulting from the lattice-mismatched growth, accounting for differences in architecture the efficiency at high cw current was approximately 75% of that of our previous best-performing standard epi-down ICLEDs grown on GaSb. At 100â mA injection current, 200-µm-diameter mesas produced 184 µW of cw output power when operated at T = 25 °C, and 140 µW at 85°C. Epi-up mid-IR light emitters grown on silicon will be far simpler to process and much less expensive to manufacture than conventional devices grown on GaSb and mounted epi-down.
RESUMO
The clinical management of melanoma patients has been rapidly evolving with the introduction of new targeted immuno-oncology (IO) therapeutics. The current diagnostic paradigms for melanoma patients begins with the histopathologic confirmation of melanoma, initial staging of disease burden with imaging and surgical approaches, treatment monitoring during systemic cytotoxic chemotherapy or IO therapeutics, restaging after completion of adjuvant systemic, surgical, and/or external radiation therapy, and the detection of recurrent malignancy/metastatic disease following therapy. New and evolving imaging approaches with positron-emission tomography (PET) imaging technologies, imaging methodologies, image reconstruction, and image analytics will likely continue to improve tumor detection, tumor characterization, and diagnostic confidence, enabling novel precision nuclear medicine practices for managing melanoma patients. This review will examine current concepts and challenges with existing PET imaging diagnostics for melanoma patients and introduce exciting new opportunities for PET in the current era of IO therapeutics.
Assuntos
Melanoma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/tendências , Medicina de Precisão/tendências , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Fluordesoxiglucose F18 , Humanos , Estadiamento de Neoplasias , Compostos RadiofarmacêuticosRESUMO
Midwave infrared interband-cascade light-emitting devices (ICLEDs) have the potential to improve the selectivity, stability, and sensitivity of low-cost gas sensors. We demonstrate a broadband direct absorption CH4 sensor with an ICLED coupled to a plastic hollow-core fiber (1 m length, 1500 µm inner diameter). The sensor achieves a 1σ noise equivalent absorption of approximately 0.2 ppmv CH4 at 1 Hz, while operating at a low drive power of 0.5 mW. A low-cost sub-ppmv CH4 sensor would make monitoring emissions more affordable and more accessible for many relevant industries, such as the petroleum, agriculture, and waste industries.
RESUMO
We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.
RESUMO
BACKGROUND: 18 F-Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) positive (PET+) cytologically indeterminate thyroid nodules (ITNs) have variable cancer risk in the literature. The benign call rate (BCR) of Afirma Gene Classifier (Gene Expression Classifier, GEC, or Genome Sequence Classifier, GSC) in (PET +) ITNs is unknown. METHODS: This is a retrospective study at our institution of all patients with (PET+) ITNs (Bethesda III/IV) from 1 January 2010 to 21 May 2019 who underwent Afirma testing and/or surgery or repeat FNA with benign cytology. RESULTS: Forty-five (PET+) ITNs were identified: 31 Afirma-tested (GEC = 20, GSC = 11) and 14 either underwent surgery (n = 13) or repeat FNA (Benign cytology) (n = 1) without Afirma. The prevalence of cancer and noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) including only resected nodules and ITN with repeat benign FNA (n = 33) was 36.4% (12/33). Excluding all Afirma "suspicious" non-resected ITNs and assuming all Afirma "benign" ITNs were truly benign, that prevalence was 28.6% (12/42). The BCR with GSC was 64% compared to 25% with GEC (p = 0.056). Combining GSC/GEC-tested ITNs, the BCR was higher in ITNs demonstrating low/very low-risk sonographic pattern by the American Thyroid Association (ATA) classification and ITNs scoring <4 by the American College of Radiology Thyroid Imaging, Reporting and Data System (ACR-TI-RADS) than ITNs with higher sonographic pattern/score (p = 0.025). CONCLUSIONS: The prevalence of cancer/NIFTP in (PET+) ITNs was 28.6-36.4% depending on the method of calculation. The BCR of Afirma GSC was 64%. Combining Afirma GEC/GSC-tested ITNs, BCR was higher in ITNs with a lower risk sonographic pattern.
Assuntos
Biomarcadores Tumorais/genética , Citodiagnóstico/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Glândula Tireoide/epidemiologia , Nódulo da Glândula Tireoide/epidemiologia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Prognóstico , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/patologia , Estados Unidos/epidemiologiaRESUMO
The aim of the study was to assess the quality and reproducibility of reducing the injected [18F] sodium fluoride ([18F]NaF) dose while maintaining diagnostic imaging quality in bone imaging in a preclinical skeletal model using digital photon counting PET (dPET) detector technology. Beagles (n = 9) were administered three different [18F]NaF doses: 111 MBq (n = 5), 20 MBq (n = 5), and 1.9 MBq (n = 9). Imaging started ≃45 min post-injection for ≃30 min total acquisition time. Images were reconstructed using Time-of-Flight, ultra-high definition (voxel size of 1 × 1 × 1 mm3), with 3 iterations and 3 subsets. Point spread function was modeled and Gaussian filtering was applied. Skeleton qualitative and quantitative molecular image assessment was performed. The overall diagnostic quality of all images scored excellent (61%) and acceptable (39%) by all the reviewers. [18F]NaF SUVmean showed no statistically significant differences among the three doses in any of the region of interest assessed. This study demonstrated that a 60-fold [18F]NaF dose reduction was not significantly different from the highest dose, and it had not significant effect on overall image quality and quantitative accuracy. In the future, ultra-low dose [18F]NaF dPET/CT imaging may significantly decrease PET radiation exposure to preclinical subjects and personnel.
RESUMO
BACKGROUND: Conventional approaches to improve the quality of clinical patient imaging studies focus predominantly on updating or replacing imaging equipment; however, it is often not considered that patients can also highly influence the diagnostic quality of clinical imaging studies. Patient-specific artifacts can limit the diagnostic image quality, especially when patients are uncomfortable, anxious, or agitated. Imaging facility or environmental conditions can also influence the patient's comfort and willingness to participate in diagnostic imaging studies, especially when performed in visually unesthetic, anxiety-inducing, and technology-intensive imaging centers. When given the opportunity to change a single aspect of the environmental or imaging facility experience, patients feel much more in control of the otherwise unfamiliar and uncomfortable setting. Incorporating commercial, easily adaptable, ambient lighting products within clinical imaging environments allows patients to individually customize their environment for a more personalized and comfortable experience. OBJECTIVE: The aim of this pilot study was to use a customizable colored light-emitting diode (LED) lighting system within a clinical imaging environment and demonstrate the feasibility and initial findings of enabling healthy subjects to customize the ambient lighting and color. Improving the patient experience within clinical imaging environments with patient-preferred ambient lighting and color may improve overall patient comfort, compliance, and participation in the imaging study and indirectly contribute to improving diagnostic image quality. METHODS: We installed consumer-based internet protocol addressable LED lights using the ZigBee standard in different imaging rooms within a clinical imaging environment. We recruited healthy volunteers (n=35) to generate pilot data in order to develop a subsequent clinical trial. The visual perception assessment procedure utilized questionnaires with preprogrammed light/color settings and further assessed how subjects preferred ambient light and color within a clinical imaging setting. RESULTS: Technical implementation using programmable LED lights was performed without any hardware or electrical modifications to the existing clinical imaging environment. Subject testing revealed substantial variabilities in color perception; however, clear trends in subject color preference were noted. In terms of the color hue of the imaging environment, 43% (15/35) found blue and 31% (11/35) found yellow to be the most relaxing. Conversely, 69% (24/35) found red, 17% (6/35) found yellow, and 11% (4/35) found green to be the least relaxing. CONCLUSIONS: With the majority of subjects indicating that colored lighting within a clinical imaging environment would contribute to an improved patient experience, we predict that enabling patients to customize environmental factors like lighting and color to individual preferences will improve patient comfort and patient satisfaction. Improved patient comfort in clinical imaging environments may also help to minimize patient-specific imaging artifacts that can otherwise limit diagnostic image quality. TRIAL REGISTRATION: ClinicalTrials.gov NCT03456895; https://clinicaltrials.gov/ct2/show/NCT03456895.
Assuntos
Cor/normas , Lasers Semicondutores/uso terapêutico , Iluminação/métodos , Assistência ao Paciente/métodos , Ambiente de Instituições de Saúde , Humanos , Internet , Projetos PilotoRESUMO
BACKGROUND: Poly(ADP-ribose) polymerase inhibitors (PARPis) are U.S. Food and Drug Administration (FDA) approved for treatment of BRCA-mutated metastatic breast cancer. Furthermore, the BROCADE studies demonstrated benefit of adding an oral PARPi, veliparib, to carboplatin and paclitaxel in patients with metastatic breast cancer harboring BRCA mutation. Given multiple possible dosing schedules and the potential benefit of this regimen for patients with defective DNA repair beyond BRCA, we sought to find the recommended phase II dose (RP2D) and schedule of veliparib in combination with carboplatin in patients with advanced breast cancer, either triple-negative (TNBC) or hormone receptor (HR)-positive, human epidermal growth receptor 2 (HER2) negative with defective Fanconi anemia (FA) DNA-repair pathway based on FA triple staining immunofluorescence assay. MATERIALS AND METHODS: Patients received escalating doses of veliparib on a 7-, 14-, or 21-day schedule with carboplatin every 3 weeks. Patients underwent [18]fluoro-3'-deoxythymidine (18 FLT) positron emission tomography (PET) imaging. RESULTS: Forty-four patients (39 TNBC, 5 HR positive/HER2 negative with a defective FA pathway) received a median of 5 cycles (range 1-36). Observed dose-limiting toxicities were grade (G) 4 thrombocytopenia (n = 4), G4 neutropenia (n = 1), and G3 akathisia (n = 1). Common grade 3-4 toxicities included thrombocytopenia, lymphopenia, neutropenia, anemia, and fatigue. Of the 43 patients evaluable for response, 18.6% achieved partial response and 48.8% had stable disease. Median progression-free survival was 18.3 weeks. RP2D of veliparib was established at 250 mg twice daily on days 1-21 along with carboplatin at area under the curve 5. Patients with partial response had a significant drop in maximum standard uptake value (SUVmax ) of target lesions between baseline and early in cycle 1 based on 18 FLT-PET (day 7-21; ptrend = .006). CONCLUSION: The combination of continuous dosing of veliparib and every-3-week carboplatin demonstrated activity and an acceptable toxicity profile. Decrease in SUVmax on 18 FLT-PET scan during the first cycle of this therapy can identify patients who are likely to have a response. IMPLICATIONS FOR PRACTICE: The BROCADE studies suggest that breast cancer patients with BRCA mutation benefit from addition of veliparib to carboplatin plus paclitaxel. This study demonstrates that a higher dose of veliparib is tolerable and active in combination with carboplatin alone. With growing interest in imaging-based early response assessment, the authors demonstrate that decrease in [18]fluoro-3'-deoxythymidine positron emission tomography (FLT-PET) SUVmax during cycle 1 of therapy is associated with response. Collectively, this study established a safety profile of veliparib and carboplatin in advanced breast cancer while also providing additional data on the potential for FLT-PET imaging modality in monitoring therapy response.
Assuntos
Neoplasias da Mama , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzimidazóis , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Carboplatina/uso terapêutico , Feminino , Humanos , Tomografia por Emissão de PósitronsRESUMO
The interband cascade laser (ICL) is an ideal candidate for low-power mid-infrared frequency comb spectroscopy. In this work, we demonstrate that its intracavity second-order optical nonlinearity induces a coherent up-conversion of the generated mid-infrared light to the near-infrared through second-harmonic and sum-frequency generation. At 1.8 µm, 10 mW of light at 3.6 µm convert into sub-nanowatt levels of optical power, spread across 30 nm of spectral coverage. The observed linear-to-nonlinear conversion efficiency exceeds ${3\;{\unicode{x00B5} {\rm W/W}}^2}$3µW/W2 in continuous wave operation. We use a dual-band ICL frequency comb source to characterize water vapor absorption in both spectral bands.
RESUMO
Head and neck squamous cell carcinoma (HNSCC) survival rates have not improved in a decade, with a 63% 5-year recurrence rate after surgery, making HNSCC a compelling indication for optical surgical navigation (OSN). A promising peptide, HN1, targeted and internalized in human HNSCC cells in multiple laboratories, but was slow (24 h) to accumulate. We modified HN1 and explored structural variables to improve the uptake kinetics and create IRdye800 adducts useful for OSN. Eleven new molecules were synthesized and characterized chemically, in human HNSCC cells (Cal 27), and in HNSCC xenograft mice. Cal 27 flank xenografts in Balb/c nude mice were imaged for 3-48 h after 40 nmol intravenous doses of IR800-labeled molecules. Cell uptake kinetics in the 1-2 h window incubated at 1-10 µM were independent of the dye label (FITC, Cy5, or IR800), but increased markedly with additional N-terminal lipophilic substitution, and after resequencing the peptide to separate polar amino acids and move the lysine-dye more centrally. Microscopy confirmed the strong Cal 27 cell binding and demonstrated primarily cytosolic and membrane localization of the fastest peptide, 4Iphf-HN17. 4Iph-HN17-IR800 showed 26-fold greater rate of uptake in cells than HN1-IR800, and far stronger OSN imaging intensity and tumor to background contrast in mice, suggesting that the new peptide is a promising candidate for OSN of HNSCC.