Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Small ; : e2404231, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943438

RESUMO

Conductive flexible hydrogels have attracted immense attentions recently due to their wide applications in wearable sensors. However, the poor mechanical properties of most conductive polymer limit their utilizations. Herein, a double network hydrogel is fabricated via a self-sorting process with cationic polyacrylamide as the first flexible network and the lantern[33]arene-based hydrogen organic framework nanofibers as the second rigid network. This hydrogel is endowed with good conductivity (0.25 S m-1) and mechanical properties, such as large Young's modulus (31.9 MPa), fracture elongation (487%) and toughness (6.97 MJ m-3). The stretchability of this hydrogel is greatly improved after the kirigami cutting, which makes it can be used as flexible strain sensor for monitoring human motions, such as bending of fingers, wrist and elbows. This study not only provides a valuable strategy for the construction of double network hydrogels by lanternarene, but also expands the application of the macrocycle hydrogels to flexible electronics.

2.
Heliyon ; 10(7): e29285, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38633650

RESUMO

Background: EEPD1 is vital in homologous recombination, while its role in cancer remains unclear. Methods: We performed multiple pan-cancer analyses of EEPD1 with bioinformatics methods, such as gene expression, gene alterations, Prognosis and enrichment analysis, tumor microenvironment, immune cell infiltration, TMB, MSI, immunotherapy, co-expression of genes, and drug resistance. Finally, RT-qPCR, EdU, and transwell assays helped investigate the impact of EEPD1 on CRC cells. Results: EEPD1 was dysregulated and correlated with bad prognosis in several cancers. GSVA and GSEA revealed that EEPD1 was primarily associated with the "WNT_BETA_CATENIN_SIGNALING," "ribonucleoprotein complex biogenesis," "Ribosome," and "rRNA processing." The infiltration of CD8+ T cells, MAIT cells, iTreg cells, NK cells, Tc cells, Tex cells, Tfh cells, and Th1 cells were negatively correlated with EEPD1 expression. Additionally, EEPD1 is significantly associated with TMB and MSI in COAD, while enhanced CRC cell proliferation and migration. Conclusions: EEPD1 was dysregulated in human cancers and correlated with various cancer patient prognoses. The dysregulated EEPD1 expression can affect tumor-infiltrating immune cells and immunotherapy response. Therefore, EEPD1 could act as an oncogene associated with immune cell infiltration in CRC.

3.
Brain Pathol ; 34(3): e13198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37530224

RESUMO

Liu et al. describe the adverse prognostic role of MET fusions and splicing variants in astrocytoma, isocitrate dehydrogenase mutant. On this basis, MET fusions and splicing variants was suggested to be a biomarker for the diagnosis of high-grade astrocytoma, isocitrate dehydrogenase mutant.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Humanos , Isocitrato Desidrogenase/genética , Prognóstico , Neoplasias Encefálicas/genética , Mutação/genética , Astrocitoma/genética
5.
Small ; 19(40): e2301934, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37271893

RESUMO

Supramolecular hydrogels involved macrocycles have been explored widely in recent years, but it remains challenging to develop hydrogel based on solitary macrocycle with super gelation capability. Here, the construction of lantern[33 ]arene-based hydrogel with low critical gelation concentration (0.05 wt%), which can be used for efficient oil-water separation, is reported. The lantern[33 ]arenes self-assemble into hydrogen-bonded organic nanoribbons, which intertwine into entangled fibers to form hydrogel. This hydrogel which exhibits reversible pH-responsiveness characteristics can be coated on stainless-steel mesh by in situ sol-gel transformation. The resultant mesh exhibits excellent oil-water separation efficiency (>99%) and flux (>6 × 104 L m-2 h-1 ). This lantern[33 ]arene-based hydrogel not only sheds additional light on the gelation mechanisms for supramolecular hydrogels, but also extends the application of macrocycle-based hydrogels as functional interfacial materials.

6.
Cancer Gene Ther ; 30(6): 905-916, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36890211

RESUMO

Hypoxia-mediated tumor progression is a major clinical challenge in human cancers including colorectal cancer (CRC). In addition, exosome-mediated transfer of miRNAs from cancer-associated fibroblasts (CAFs) to cancer cells could promote tumor progression. However, the mechanisms by which hypoxia CAFs promotes CRC progression remain largely unknown. CAFs and normal fibroblasts (NFs) were isolated from CRC tissues and adjacent normal tissues. Next, exosomes were isolated from the supernatant of CAFs that cultured under normoxia (CAFs-N-Exo) and hypoxia (CAFs-H-Exo). RNA-sequencing was then performed to identify differentially expressed miRNAs (DEMs) between CAFs-N-Exo and CAFs-H-Exo. Compared with exosomes derived from normoxia CAFs, exosomes derived from hypoxic CAFs were able to promote CRC cell proliferation, migration, invasion, stemness and reduce the sensitivity of CRC cells to 5-fluorouracil (5-FU). In addition, miR-200b-3p levels were dramatically decreased in exosomes derived from hypoxic CAFs. Remarkably, increasing exosomal miR-200b-3p in hypoxic CAFs reversed the promoting effects of hypoxic CAFs on CRC cell growth in vitro and in vivo. Furthermore, miR-200b-3p agomir could inhibit CRC cell migration, invasion, stemness and increase the sensitivity of SW480 cells to 5-FU via downregulating ZEB1 and E2F3. Collectively, loss of exosomal miR-200b-3p in hypoxia CAFs could contribute to CRC progression via upregulation of ZEB1 and E2F3. Thus, increasing exosomal miR-200b-3p might serve as an alternative approach for the treatment of CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Exossomos , MicroRNAs , Humanos , Fibroblastos Associados a Câncer/patologia , Regulação para Cima , MicroRNAs/genética , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Exossomos/genética , Exossomos/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Fator de Transcrição E2F3
7.
Brain Pathol ; 33(4): e13153, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36751054

RESUMO

H3 K27-altered diffuse midline glioma is a highly lethal pediatric-type tumor without efficacious treatments. Recent findings have highlighted the heterogeneity among diffuse midline gliomas with different locations and ages. Compared to tumors located in the brain stem and thalamus, the molecular and clinicopathological features of H3 K27-altered spinal cord glioma are still largely elusive, thus hindering the accurate management of patients. Here we aimed to characterize the clinicopathological and molecular features of H3 K27M-mutant spinal cord glioma in 77 consecutive cases. We found that the H3 K27M-mutant spinal cord glioma, with a median age of 35 years old, had a significantly better prognosis than H3 K27M-mutant brain tumors. We noticed a molecular heterogeneity of H3 K27M-mutant spinal cord astrocytoma via targeted sequencing with 34 cases. TP53 mutation which occurred in 58.8% of cases is mutually exclusive with PPM1D (26%) and NF1 (44%) mutations. The TP53-mutant cases had a significantly higher number of copy number variants (CNV) and a marginally higher proportion of pediatric patients (age at diagnosis <18 years old, p = 0.056). Cox regression and Kaplan-Meier curve analysis showed that the higher number of CNV events (≥3), chromosome (Chr) 9p deletion, Chr 10p deletion, ATRX mutation, CDK6 amplification, and retinoblastoma protein (RB) pathway alteration are associated with worse survival. Cox regression analysis with clinicopathological features showed that glioblastoma histological type and a high Ki-67 index (>10%) are associated with a worse prognosis. Interestingly, the histological type, an independent prognostic factor in multivariate Cox regression, can also stratify molecular features of H3 K27M-mutant spinal cord glioma, including the RB pathway, KRAS/PI3K pathway, and chromosome arms CNV. In conclusion, although all H3 K27M-mutant spinal cord diffuse glioma were diagnosed as WHO Grade 4, the histological type, molecular features representing chromatin instability, and molecular alterations associated with accelerated cell proliferative activity should not be ignored in clinical management.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias da Medula Espinal , Humanos , Criança , Adulto , Adolescente , Histonas/genética , Prognóstico , Fosfatidilinositol 3-Quinases/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias da Medula Espinal/genética , Mutação , Genômica
8.
Neural Regen Res ; 18(2): 396-403, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900436

RESUMO

After spinal cord injury (SCI), a fibroblast- and microglia-mediated fibrotic scar is formed in the lesion core, and a glial scar is formed around the fibrotic scar as a result of the activation and proliferation of astrocytes. Simultaneously, a large number of neurons are lost in the injured area. Regulating the dense glial scar and replenishing neurons in the injured area are essential for SCI repair. Polypyrimidine tract binding protein (PTB), known as an RNA-binding protein, plays a key role in neurogenesis. Here, we utilized short hairpin RNAs (shRNAs) and antisense oligonucleotides (ASOs) to knock down PTB expression. We found that reactive spinal astrocytes from mice were directly reprogrammed into motoneuron-like cells by PTB downregulation in vitro. In a mouse model of compression-induced SCI, adeno-associated viral shRNA-mediated PTB knockdown replenished motoneuron-like cells around the injured area. Basso Mouse Scale scores and forced swim, inclined plate, cold allodynia, and hot plate tests showed that PTB knockdown promoted motor function recovery in mice but did not improve sensory perception after SCI. Furthermore, ASO-mediated PTB knockdown improved motor function restoration by not only replenishing motoneuron-like cells around the injured area but also by modestly reducing the density of the glial scar without disrupting its overall structure. Together, these findings suggest that PTB knockdown may be a promising therapeutic strategy to promote motor function recovery during spinal cord repair.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36554489

RESUMO

In response to the current problem of the high energy consumption of direct thermal desorption systems when treating soils with a high moisture content, we propose using the waste heat of the system to pre-dry soil to reduce its moisture. Taking chlorine-organic-contaminated soil as an object, an experimental study on the drying and pollutant desorption characteristics of soil in an indirect rotary dryer was carried out. The results show that the non-isothermal drying process was divided into warm-up and falling rate periods, and no constant period was observed. The higher the rotation speed, the lower the soil outlet temperature and the higher the drying tail gas temperature. Soil outlet and dry tail gas temperatures were lower for soils with a higher moisture content. Benzene and cis-1,2-dichloroethylene are easily desorbed. Therefore, the disposal of dry tail gas should be determined according to the type and concentration of soil pollutants present. The volumetric heat transfer coefficient was found to be 85-100 W m-3 °C-1, which provides a key parameter for the size design of a rotary dryer.


Assuntos
Cloro , Conservação de Recursos Energéticos , Dessecação/métodos , Poluição Ambiental , Solo
10.
Front Oncol ; 12: 920131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276139

RESUMO

Hypoxia-mediated tumor progression is a major problem in colorectal cancer (CRC). MicroRNA (miR)-200b-3p can attenuate tumorigenesis in CRC, while exosomal miRNAs derived from cancer-associated fibroblasts (CAFs) can promote cancer progression. Nevertheless, the function of exosomal miR-200b-3p derived from CAFs in CRC remains unclear. In this study, CAFs and normal fibroblasts (NFs) were isolated from CRC and adjacent normal tissues. Next, exosomes were isolated from the supernatants of CAFs cultured under normoxia and hypoxia. Cell viability was tested using the cell counting kit-8 assay, and flow cytometry was used to assess cell apoptosis. Cell invasion and migration were evaluated using the transwell assay. Dual-luciferase was used to investigate the relationship between miR-200b-3p and high-mobility group box 3 (HMBG3). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to determine the miR-200b-3p and HMBG3 level. Our results found that the miR-200b-3p level was sharply reduced in CRC tissues compared to adjacent normal tissues. Additionally, the miR-200b-3p level was reduced in exosomes derived from hypoxic CAFs compared to exosomes derived from CAFs under normoxia. Exosomes derived from hypoxic CAFs weakened the sensitivity of CRC cells to 5-fluorouracil (5-FU) compared to hypoxic CAFs-derived exosomes. However, hypoxic CAFs-derived exosomes with upregulated miR-200b-3p increased the sensitivity of CRC cells to 5-fluorouracil (5-FU) compared to hypoxic CAFs-derived exosomes. In addition, HMBG3 was identified as the downstream target of miR-200b-3p in CRC cells, and its overexpression partially reversed the anti-tumor effect of the miR-200b-3p agomir on CRC via the mediation of the ß-catenin/c-Myc axis. Furthermore, compared to exosomes derived from normoxia CAFs, exosomes derived from hypoxic CAFs weakened the therapeutic effects of 5-FU on CRC in vivo via the upregulation of HMGB3 levels. Collectively, the loss of exosomal miR-200b-3p in hypoxia CAFs reduced the sensitivity to 5-FU in CRC by targeting HMGB3. Thus, our research outlines a novel method for the treatment of CRC.

11.
IEEE J Biomed Health Inform ; 26(12): 6047-6057, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094997

RESUMO

Compared to computed tomography (CT), magnetic resonance imaging (MRI) is more sensitive to acute ischemic stroke lesion. However, MRI is time-consuming, expensive, and susceptible to interference from metal implants. Generating MRI images from CT images can address the limitations of MRI. The key problem in the process is obtaining lesion information from CT. In this study, we propose a cross-modal image generation algorithm from CT to MRI for acute ischemic stroke by combining radiomics with generative adversarial networks. First, the lesion candidate region was obtained using radiomics, the radiomic features of the region were extracted, and the feature with the largest information gain was selected and visualized as a feature map. Then, the concatenation of the extracted feature map and the CT image was input in the generator. We added a residual module after the downsampling of the generator, following the general shape of U-Net, which can deepen the network without causing degradation problems. In addition, we introduced the lesion feature similarity loss function to focus the model on the similarity of the lesion. Through the subjective judgment of two experienced radiologists and using evaluation metrics, the results showed that the generated MRI images were very similar to the real MRI images. Moreover, the locations of the lesions were correct, and the shapes of lesions were similar to those of the real lesions, which can help doctors with timely diagnosis and treatment.


Assuntos
AVC Isquêmico , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos
12.
J Biol Chem ; 298(10): 102452, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063998

RESUMO

The pMN domain is a restricted domain in the ventral spinal cord, defined by the expression of the olig2 gene. Though it is known that the pMN progenitor cells can sequentially generate motor neurons and oligodendrocytes, the lineages of these progenitors are controversial and how their progeny are generated is not well understood. Using single-cell RNA sequencing, here, we identified a previously unknown heterogeneity among pMN progenitors with distinct fates and molecular signatures in zebrafish. Notably, we characterized two distinct motor neuron lineages using bioinformatic analysis. We then went on to investigate specific molecular programs that regulate neural progenitor fate transition. We validated experimentally that expression of the transcription factor myt1 (myelin transcription factor 1) and inner nuclear membrane integral proteins lbr (lamin B receptor) were critical for the development of motor neurons and neural progenitor maintenance, respectively. We anticipate that the transcriptome features and molecular programs identified in zebrafish pMN progenitors will not only provide an in-depth understanding of previous findings regarding the lineage analysis of oligodendrocyte progenitor cells and motor neurons but will also help in further understanding of the molecular programming involved in neural progenitor fate transition.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptor de Lamina B
13.
Cancer Discov ; 12(12): 2820-2837, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36122307

RESUMO

Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE: GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Isocitrato Desidrogenase/genética , Prognóstico , Hipóxia/genética
14.
Phytochem Anal ; 33(7): 1147-1155, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908761

RESUMO

INTRODUCTION: Harvest time plays an important role on the quality of medicinal plants. The leaves of Crataegus pinnatifida Bge. var major N.E.Br (hawthorn leaves) could be harvested in summer and autumn according to the Pharmacopoeia of the People's Republic of China (Pharmacopoeia). However, little is known about the difference of the chemical constituents in hawthorn leaves with the harvest seasonal variations. OBJECTIVE: The chemical constituents of hawthorn leaves in different months were comprehensively analysed to determine the best harvest time. METHODS: Initially, the chemical information of the hawthorn leaves were obtained by ultra-high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Subsequently, principal component analysis (PCA) was applied to compare the chemical compositions of hawthorn leaves harvested in different months. Then, an absolute quantitation method was established using high-performance liquid chromatography-charged aerosol detector (HPLC-CAD) to determine the contents of five compounds and clarify the changes of these components with the harvest seasonal variations. Meanwhile, a semi-quantitative method by integrating HPLC-CAD with inverse gradient compensation was also established and verified. RESULTS: Fifty-eight compounds were identified through UHPLC-Q-TOF-MS. PCA revealed that the harvest season of hawthorn leaves had a significant effect on the chemical compositions. The contents of five components were relatively high in autumn. Other four main components without reference standards were further analysed through the semi-quantitative method, which also showed a high content in autumn. CONCLUSIONS: This work emphasised the effect of harvest time on the chemical constituents of hawthorn leaves and autumn is recommended to ensure the quality.


Assuntos
Crataegus , Plantas Medicinais , China , Cromatografia Líquida de Alta Pressão/métodos , Crataegus/química , Folhas de Planta/química , Plantas Medicinais/química
15.
Biomed Res Int ; 2022: 7382130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845929

RESUMO

Methods: Data from TCMSP and GEO databases were utilized to identify targets for Celastrol on DCM. The relationship between the major targets and conventional glycolipid metabolism was obtained with Spearman correlation analysis. Experiments on animals were conducted utilizing healthy control (HC), low-dose Celastrol interventions (CL), and no intervention groups (NC), all of which had 8 SD rats in each group. To study alterations in signaling molecules, RT-PCR was performed. Results: There were 76 common targets and 5 major targets for Celastrol-DCM. Celastrol have been found to regulate AGE-RAGE, TNF, MAPK, TOLL-like receptors, insulin resistance, and other signaling pathways, and they are closely linked to adipocytokines, fatty acid metabolism, glycolipid biosynthesis, and glycosylphosphati-dylinositol biosynthesis on DCM. These five major targets have been found to regulate these pathways. Experiments on rats indicated that P38 MAPK was considerably elevated in the cardiac tissue from rats in the CL and NC groups compared to the HC group, and the difference was statistically significant (P < 0.01). Significant differences were seen between the CL and NC groups in P38 MAPK levels, with a statistical significance level of less than 0.05. Conclusion: Celastrol may play a role in reversing energy remodeling, anti-inflammation, and oxidative stress via modulating p38 protein expression in the MAPK pathway, which have been shown in the treatment of DCM.


Assuntos
Triterpenos , Animais , Glicolipídeos , Farmacologia em Rede , Triterpenos Pentacíclicos , Ratos , Ratos Sprague-Dawley , Triterpenos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
16.
Front Cell Dev Biol ; 10: 891482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712661

RESUMO

Colorectal cancer is one of the common malignant tumors in the digestive system, with high incidence and mortality rate. Therefore, there is an urgent need to identify and develop new molecular targets for colorectal cancer treatment. Previous studies have pointed out the important role of HMGB3 in tumors, and how it works in colorectal cancer needs to be studied in depth. In this study, we found that HMGB3 was highly expressed in COAD in the cBioPortal and GEPIA2 databases. Kaplan-Meier analysis showed that compared with patients with lower HMGB3 levels, patients with higher HMGB3 levels had poorer OS (p = 0.001). We also found a correlation between HMGB3 expression and immune infiltration of CRC. To investigate the mechanism of HMGB3 knockdown-mediated colorectal cancer inhibition, we detected a downregulation of N-cadherin, Vimentin and ß-catenin proteins after knockdown of HMGB3. Taken together, HMGB3 can be an effective target for CRC treatment in the future, and we have reason to believe that HMGB3 will be of greater value in more tumors in the near future.

17.
Gastroenterol Res Pract ; 2022: 6972331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615737

RESUMO

Objective: BHLHE41 has been shown to be a marker of tumorigenesis. Colon cancer (CC) is a common malignant tumor of colonic mucosa. This study mainly explored the mechanism of BHLHE41 in alleviating malignant behavior of hypoxia-induced CC cells. Methods: The levels of BHLHE41 in CC and normal cell lines were tested by Western blot and qRT-PCR. After, CC cells were subjected to hypoxia treatment and BHLHE41 overexpression transfection, and the BHLHE41 expression, the effect of BHLHE41 on CC cell viability, apoptosis, migration, and invasion and cell cycle were tested by qRT-PCR and relevant cell functional experiments. HIF-1α and epithelial-mesenchymal transition- (EMT-) related proteins were tested by Western blot. Moreover, CC tumor-bearing model was established in nude mice, and the effect of BHLHE41 on the tumor was evaluated by measuring the tumor volume and weight. Then, the expressions of BHLHE41 and EMT-related proteins were detected by immunohistochemistry and Western blot. Results: Western blot and qRT-PCR showed that BHLHE41 was lowly expressed in CC cells. BHLHE41 overexpression could inhibit the hypoxia-induced CC cell viability, migration, and invasion, induce apoptosis, and alter cell cycle. Besides, BHLHE41 overexpression could enhance the levels of E-cadherin but reduce the levels of HIF-1α, N-cadherin, vimentin, and MMP9 in hypoxia-induced CC cells. Moreover, BHLHE41 overexpression reduced tumor volume, weight, and EMT-related proteins levels in tumor tissues. Conclusions: BHLHE41 overexpression could mitigate the malignant behavior of hypoxia-induced CC via modulating the HIF-1α/EMT pathway.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35579161

RESUMO

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

19.
Environ Sci Pollut Res Int ; 29(17): 26011-26020, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35254620

RESUMO

The toxicity of silver nanoparticles (AgNPs) with a single morphology to aquatic organisms has been well demonstrated in the past decade, but few studies have been carried out to evaluate the differences in toxicity among AgNPs with various microstructural morphologies. In this work, C. vulgaris was used as the tested organism to examine the differences in toxic effects among AgNSs, AgNCs, and AgPLs at concentrations of 0.5, 1.0, 2.0, and 5.0 mg/L. The results showed that the cell density and chlorophyll a content of C. vulgaris decreased when the dose of AgNPs was increased, while the inhibiting effects that were caused by AgPLs were stronger than those that were caused by AgNCs and AgNSs. Under short-term exposure to AgPLs, the ROS content was significantly higher than those under exposure to AgNCs and AgNSs, while the MDA content fluctuated without obvious regularity. The dose of AgPLs affected the antioxidative enzyme activity and lipid peroxidation more obviously than those of AgNSs and AgNCs. The superoxide dismutase and catalase contents in the former case were distinctly higher than those in the latter cases. Consequently, the cell apoptosis rate under exposure to AgPLs reached 83%, which was higher than those under exposure to AgNSs (50%) and AgNCs (71%). This work shows that the level of toxicity to C. vulgaris was in the order of AgPLs > AgNCs > AgNSs. The obtained results demonstrate that the microstructural morphologies of AgNPs determined their potential toxicity.


Assuntos
Chlorella vulgaris , Nanopartículas Metálicas , Antioxidantes/farmacologia , Estruturas Celulares , Clorofila A , Homeostase , Nanopartículas Metálicas/toxicidade , Prata/toxicidade
20.
J Vis Exp ; (181)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35311829

RESUMO

As a vertebrate, the zebrafish has been widely used in biological studies. Zebrafish and humans share high genetic homology, which allows its use as a model for human diseases. Gene function study is based on the detection of gene expression patterns. Although immunohistochemistry offers a powerful way to assay protein expression, the limited number of commercially available antibodies in zebrafish restricts the application of costaining. In situ hybridization is widely used in zebrafish embryos to detect mRNA expression. This protocol describes how to obtain images by combining in situ hybridization and immunohistochemistry for zebrafish embryo sections. In situ hybridization was performed prior to cryosectioning, followed by antibody staining. Immunohistochemistry and the imaging of a single cryosection were performed after in situ hybridization. The protocol is helpful to unravel the expression pattern of two genes, first by in situ transcript detection and then by immunohistochemistry against a protein in the same section.


Assuntos
Embrião não Mamífero , Peixe-Zebra , Animais , Crioultramicrotomia , Embrião não Mamífero/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...