Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403858, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606607

RESUMO

Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism-guided strategy to discover the electrophilic halogenation activity catalyzed by non-native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin-dependent monooxygenases/oxidases capable of forming C4a-hydroperoxyflavin (FlC4a-OOH), such as dehalogenase, hydroxylases, luciferase and pyranose-2-oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped-flow spectrophotometry/fluorometry and product analysis indicate that FlC4a-OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a-OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a-OOH can react with halides to form HOX, QM/MM calculations, site-directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.

2.
Biotechnol J ; 19(1): e2300330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180313

RESUMO

NAD+ -dependent formate dehydrogenase (FDH) catalyzes the conversion of formate and NAD+ to produce carbon dioxide and NADH. The reaction is biotechnologically important because FDH is widely used for NADH regeneration in various enzymatic syntheses. However, major drawbacks of this versatile enzyme in industrial applications are its low activity, requiring its utilization in large amounts to achieve optimal process conditions. Here, FDH from Bacillus simplex (BsFDH) was characterized for its biochemical and catalytic properties in comparison to FDH from Pseudomonas sp. 101 (PsFDH), a commonly used FDH in various biocatalytic reactions. The data revealed that BsFDH possesses high formate oxidizing activity with a kcat value of 15.3 ± 1.9 s-1 at 25°C compared to 7.7 ± 1.0 s-1 for PsFDH. At the optimum temperature (60°C), BsFDH exhibited 6-fold greater activity than PsFDH. The BsFDH displayed higher pH stability and a superior tolerance toward sodium azide and H2 O2 inactivation, showing a 200-fold higher Ki value for azide inhibition and remaining stable in the presence of 0.5% H2 O2 compared to PsFDH. The application of BsFDH as a cofactor regeneration system for the detoxification of 4-nitrophenol by the reaction of HadA, which produced a H2 O2 byproduct was demonstrated. The biocatalytic cascades using BsFDH demonstrated a distinct superior conversion activity because the system tolerated H2 O2 well. Altogether, the data showed that BsFDH is a robust enzyme suitable for future application in industrial biotechnology.


Assuntos
Bacillus , Formiato Desidrogenases , NAD , Formiato Desidrogenases/metabolismo , NAD/metabolismo , Catálise , Formiatos
3.
J Biol Chem ; 300(2): 105598, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159859

RESUMO

Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase the levels of a pool of sugar phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN, and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation, and alkane biosynthesis) with different cofactor demands. Productivities of these cells were increased 2-4-fold by the XR/lactose system. Untargeted metabolomic analysis revealed different metabolite patterns among these cells, demonstrating that only metabolites involved in relevant cofactor biosynthesis were altered. The results were also confirmed by transcriptomic analysis. Another sugar reducing system (glucose dehydrogenase) could also be used to increase fatty alcohol production but resulted in less yield enhancement than XR. This work demonstrates that the approach of increasing cellular sugar phosphates can be a generic tool to increase in vivo cofactor generation upon cellular demand for synthetic biology.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas , Aldeído Redutase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Álcoois Graxos/metabolismo , Fermentação , Lactose/metabolismo , Engenharia Metabólica/métodos , Fosfatos Açúcares/metabolismo , Xilose/metabolismo
4.
J Biol Chem ; 299(12): 105413, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918809

RESUMO

Flavin-dependent monooxygenases (FDMOs) are known for their remarkable versatility and for their crucial roles in various biological processes and applications. Extensive research has been conducted to explore the structural and functional relationships of FDMOs. The majority of reported FDMOs utilize C4a-(hydro)peroxyflavin as a reactive intermediate to incorporate an oxygen atom into a wide range of compounds. This review discusses and analyzes recent advancements in our understanding of the structural and mechanistic features governing the enzyme functions. State-of-the-art discoveries related to common and distinct structural properties governing the catalytic versatility of the C4a-(hydro)peroxyflavin intermediate in selected FDMOs are discussed. Specifically, mechanisms of hydroxylation, dehalogenation, halogenation, and light-emitting reactions by FDMOs are highlighted. We also provide new analysis based on the structural and mechanistic features of these enzymes to gain insights into how the same intermediate can be harnessed to perform a wide variety of reactions. Challenging questions to obtain further breakthroughs in the understanding of FDMOs are also proposed.


Assuntos
Flavinas , Oxigenases de Função Mista , Catálise , Flavinas/metabolismo , Cinética , Oxigenases de Função Mista/química
5.
Arch Biochem Biophys ; 747: 109768, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769893

RESUMO

3,4-Dihydroxyphenylacetate (DHPA) 2,3-dioxygenase (EC 1.13.11.15) from Acinetobacter baumannii (AbDHPAO) is an enzyme that catalyzes the 2,3-extradiol ring-cleavage of DHPA in the p-hydroxyphenylacetate (HPA) degradation pathway. While the biochemical reactions of various DHPAOs have been reported, only structures of DHPAO from Brevibacterium fuscum and their homologs are available. Here, we report the X-ray structure and biochemical characterization of an Fe2+-specific AbDHPAO that shares 12% sequence identity to the enzyme from B. fuscum. The 1.8 Å X-ray structure of apo-AbDHPAO was determined with four subunits per asymmetric unit, consistent with a homotetrameric structure. Interestingly, the αß-sandwiched fold of the AbDHPAO subunit is different from the dual ß-barrel-like motif of the well-characterized B. fuscum DHPAO structures; instead, it is similar to the structures of non-DHPA extradiol dioxygenases from Comamonas sp. and Sphingomonas paucimobilis. Similarly, these extradiol dioxygenases share the same chemistry owing to a conserved 2-His-1-carboxylate catalytic motif. Structure analysis and molecular docking suggested that the Fe2+ cofactor and substrate binding sites consist of the conserved residues His12, His57, and Glu238 forming a 2-His-1-carboxylate motif ligating to Fe2+ and DHPA bound with Fe2+ in an octahedral coordination. In addition to DHPA, AbDHPAO can also use other 3,4-dihydroxyphenylacetate derivatives with different aliphatic carboxylic acid substituents as substrates, albeit with low reactivity. Altogether, this report provides a better understanding of the structure and biochemical properties of AbDHPAO and its homologs, which is advancing further modification of DHPAO in future applications.

6.
Arch Biochem Biophys ; 748: 109762, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739114

RESUMO

The rapid resistance of pathogens to antibiotics has emerged as a major threat to global health. Identification of new antibiotic targets is thus needed for developing alternative drugs. Genes encoding enzymes involved in the biosynthesis of riboflavin and flavin cofactors (FMN/FAD) are attractive targets because these enzymatic reactions are necessary for most bacteria to synthesize flavin cofactors for use in their central metabolic reactions. Moreover, humans lack most of these enzymes because we uptake riboflavin from our diet. This review discusses the current knowledge of enzymes involved in bacterial biosynthesis of riboflavin and other flavin cofactors, as well as the functions of the FMN riboswitch. Here, we highlight recent progress in the structural and mechanistic characterization, and inhibition of GTP cyclohydrolase II (GCH II), lumazine synthase (LS), riboflavin synthase (RFS), FAD synthetase (FADS), and FMN riboswitch, which have been identified as plausible antibiotic targets. As the structures and functions of these enzymes and regulatory systems are not completely understood, they are attractive as subjects for future in-depth biochemical and biophysical analysis.


Assuntos
Antibacterianos , Riboswitch , Humanos , Mononucleotídeo de Flavina/metabolismo , Riboflavina/química , Flavina-Adenina Dinucleotídeo/metabolismo
7.
FEBS J ; 290(21): 5171-5195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522421

RESUMO

The dimethyl sulfone monooxygenase system is a two-component flavoprotein, catalyzing the monooxygenation of dimethyl sulfone (DMSO2 ) by oxidative cleavage producing methanesulfinate and formaldehyde. The reductase component (DMSR) is a flavoprotein with FMN as a cofactor, catalyzing flavin reduction using NADH. The monooxygenase (DMSMO) uses reduced flavin from the reductase and oxygen for substrate monooxygenation. DMSMO can bind to FMN and FMNH- with a Kd of 17.4 ± 0.9 µm and 4.08 ± 0.8 µm, respectively. The binding of FMN to DMSMO is required prior to binding DMSO2 . This also applies to the fast binding of reduced FMN to DMSMO followed by DMSO2 . Substituting reduced DMSR with FMNH- demonstrated the same oxidation kinetics, indicating that FMNH- from DMSR was transferred to DMSMO. The oxidation of FMNH- :DMSMO, with and without DMSO2 did not generate any flavin adducts for monooxygenation. Therefore, H2 O2 is likely to be the reactive agent to attack the substrate. The H2 O2 assay results demonstrated production of H2 O2 from the oxidation of FMNH- :DMSMO, whereas H2 O2 was not detected in the presence of DMSO2 , confirming H2 O2 utilization. The rate constant for methanesulfinate formation determined from rapid quenched flow and the rate constant for flavin oxidation were similar, indicating that H2 O2 rapidly reacts with DMSO2 , with flavin oxidation as the rate-limiting step. This is the first report of the kinetic mechanisms of both components using rapid kinetics and of a method for methanesulfinate detection using LC-MS.


Assuntos
Dimetil Sulfóxido , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Peróxido de Hidrogênio , Flavoproteínas/metabolismo , Oxirredutases/metabolismo , Oxirredução , Flavinas/metabolismo , Cinética , Mononucleotídeo de Flavina/metabolismo
8.
J Chem Inf Model ; 63(12): 3903-3910, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37310018

RESUMO

8-Demethyl-8-dimethylaminoriboflavin (Roseoflavin or RoF) is a natural riboflavin analogue found in Streptomyces davaonensis and Streptomyces cinnabarinus. RoF displays potent antibiotic properties because it affects FMN riboswitches and flavoproteins of cellular targets. N,N-8-Demethyl-8-aminoriboflavin dimethyltransferase (RosA) is an enzyme that catalyzes the last step of RoF biosynthesis, a consecutive dimethylation of 8-demethyl-8-aminoriboflavin (AF) to generate RoF. Thus, understanding mechanistic insights into RosA structures and mechanisms could lead to the improvement of the RoF product yield. Herein, mechanistic insights into roseoflavin synthesis by RosA were evaluated using molecular dynamics simulations. The obtained results revealed that RosA possibly catalyzes the reaction by positioning the substrate binding to have proper distance and orientation to the methyl group donor, S-adenosylmethionine. No direct participation of catalytic residues in the reaction was identified. The enzyme's active site structures change drastically to accommodate the ligand binding. On the basis of the MM/GBSA calculations and conservation analysis, the amino acid residues involved in substrate binding were identified. The structural information obtained from this study could be beneficial in designing RosA to efficiently produce roseoflavin.


Assuntos
Simulação de Dinâmica Molecular , Rosa , Rosa/metabolismo , Riboflavina/química , Riboflavina/metabolismo
9.
J Biol Chem ; 299(5): 104639, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965614

RESUMO

Luciferase-based gene reporters generating bioluminescence signals are important tools for biomedical research. Amongst the luciferases, flavin-dependent enzymes use the most economical chemicals. However, their applications in mammalian cells are limited due to their low signals compared to other systems. Here, we constructed Flavin Luciferase from Vibrio campbellii (Vc) for Mammalian Cell Expression (FLUXVc) by engineering luciferase from V. campbellii (the most thermostable bacterial luciferase reported to date) and optimizing its expression and reporter assays in mammalian cells which can improve the bioluminescence light output by >400-fold as compared to the nonengineered version. We found that the FLUXVc reporter gene can be overexpressed in various cell lines and showed outstanding signal-to-background in HepG2 cells, significantly higher than that of firefly luciferase (Fluc). The combined use of FLUXVc/Fluc as target/control vectors gave the most stable signals, better than the standard set of Fluc(target)/Rluc(control). We also demonstrated that FLUXVc can be used for testing inhibitors of the NF-κB signaling pathway. Collectively, our results provide an optimized method for using the more economical flavin-dependent luciferase in mammalian cells.


Assuntos
Biotecnologia , Genes Reporter , Luciferases , Medições Luminescentes , Animais , Genes Reporter/genética , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/normas , Mamíferos/metabolismo , Vibrio/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Vetores Genéticos , Biotecnologia/métodos
10.
CRISPR J ; 6(2): 99-115, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36367987

RESUMO

Point-of-care (POC) nucleic acid detection technologies are poised to aid gold-standard technologies in controlling the COVID-19 pandemic, yet shortcomings in the capability to perform critically needed complex detection-such as multiplexed detection for viral variant surveillance-may limit their widespread adoption. Herein, we developed a robust multiplexed clustered regularly interspaced short palindromic repeats (CRISPR)-based detection using LwaCas13a and PsmCas13b to simultaneously diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and pinpoint the causative SARS-CoV-2 variant of concern (VOC)-including globally dominant VOCs Delta (B.1.617.2) and Omicron (B.1.1.529)-all the while maintaining high levels of accuracy upon the detection of multiple SARS-CoV-2 gene targets. The platform has several attributes suitable for POC use: premixed, freeze-dried reagents for easy use and storage; convenient direct-to-eye or smartphone-based readouts; and a one-pot variant of the multiplexed detection. To reduce reliance on proprietary reagents and enable sustainable use of such a technology in low- and middle-income countries, we locally produced and formulated our own recombinase polymerase amplification reaction and demonstrated its equivalent efficiency to commercial counterparts. Our tool-CRISPR-based detection for simultaneous COVID-19 diagnosis and variant surveillance that can be locally manufactured-may enable sustainable use of CRISPR diagnostics technologies for COVID-19 and other diseases in POC settings.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , Sistemas CRISPR-Cas/genética , Edição de Genes
11.
FEBS J ; 290(1): 176-195, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35942637

RESUMO

HadA monooxygenase catalyses the detoxification of halogenated phenols and nitrophenols via dehalogenation and denitration respectively. C4a-hydroperoxy-FAD is a key reactive intermediate wherein its formation, protonation and stabilization reflect enzyme efficiency. Herein, transient kinetics, site-directed mutagenesis and pH-dependent behaviours of HadA reaction were employed to identify key features stabilizing C4a-adducts in HadA. The formation of C4a-hydroperoxy-FAD is pH independent, whereas its decay and protonation of distal oxygen are associated with pKa values of 8.5 and 8.4 respectively. These values are correlated with product formation within a pH range of 7.6-9.1, indicating the importance of adduct stabilization to enzymatic efficiency. We identified Arg101 as a key residue for reduced FAD (FADH- ) binding and C4a-hydroperoxy-FAD formation due to the loss of these abilities as well as enzyme activity in HadAR101A and HadAR101Q . Mutations of the neighbouring Asn447 do not affect the rate of C4a-hydroperoxy-FAD formation; however, they impair FADH- binding. The disruption of Arg101/Asn447 hydrogen bond networking in HadAN447A increases the pKa value of C4a-hydroperoxy-FAD decay to 9.5; however, this pKa was not altered in HadAN447D (pKa of 8.5). Thus, Arg101/Asn447 pair should provide important interactions for FADH- binding and maintain the pKa associated with H2 O2 elimination from C4a-hydroperoxy-FAD in HadA. In the presence of substrate, the formation of C4a-hydroxy-FAD at the hydroxylation step is pH insensitive, and it dehydrates to form the oxidized FAD with pKa of 7.9. This structural feature might help elucidate how the reactive intermediate was stabilized in other flavin-dependent monooxygenases.


Assuntos
Flavinas , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Oxirredução , Flavinas/metabolismo , Mutagênese Sítio-Dirigida , Fenóis , Cinética , Flavina-Adenina Dinucleotídeo/metabolismo
12.
Arch Biochem Biophys ; 734: 109498, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572346

RESUMO

Aldehyde-deformylating oxygenase (ADO) is a non-heme di-iron enzyme that catalyzes the deformylation of aldehydes to generate alkanes/alkenes. In this study, we report for the first time that under anaerobic or limited oxygen conditions, Prochlorococcus marinus (PmADO) can generate full-length fatty alcohols from fatty aldehydes without eliminating a carbon unit. In contrast to ADO's native activity, which requires electrons from the Fd/FNR electron transfer complex, ADO's aldehyde reduction activity requires only NAD(P)H. Our results demonstrated that the yield of alcohol products could be affected by oxygen concentration and the type of aldehyde. Under strictly anaerobic conditions, yields of octanol were up to 31%. Moreover, metal cofactors are not involved in the aldehyde reductase activity of PmADO because the yields of alcohols obtained from apoenzyme and holoenzyme treated with various metals were similar under anaerobic conditions. In addition, PmADO prefers medium-chain aldehydes, specifically octanal (kcat/Km around 15 × 10-3 µM-1min-1). The findings herein highlight a new activity of PmADO, which may be applied as a biocatalyst for the industrial synthesis of fatty alcohols.


Assuntos
Aldeído Redutase , Cianobactérias , Álcoois Graxos , Oxigenases , Aldeídos , Oxigênio
13.
FEBS J ; 290(9): 2449-2462, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36177488

RESUMO

Succinic semialdehyde dehydrogenase (SSADH) catalyses the conversion of succinic semialdehyde into succinic acid and two electrons are transferred to NAD(P)+ to yield NAD(P)H. Our previous work has already reported the catalytic role of Cys289 of two-cysteine SSADH from Acinetobacter baumannii (AbSSADH). However, the mechanistic role of the neighbouring conserved Cys291 and Glu255 remains unexplored. In this study, the functional roles of Cys291 and Glu255 in AbSSADH catalysis have been characterized. Results demonstrated that the E255A activity was almost completely lost, ~ 7000-fold lower than the wild-type (WT), indicating that Glu255 is very crucial and directly involved in AbSSADH catalysis. However, the C291A and C291S variants activity and catalytic turnover (kcat ) decreased ~ 2-fold and 9-fold respectively. To further characterize the functional roles of Cys291, we employed two pH-dependent methods; pre-steady-state burst amplitude and NADP-enzyme adduct formation. The results showed that the pKa values of catalytic Cys289 measured for the WT and C291A reactions were 7.8 and 8.7-8.8, respectively, suggesting that Cys291 can lower the pKa of Cys289 and consequently trigger the deprotonation of a Cys289 thiol. In addition, the Cys291 also plays a role in disulfide/sulfhydryl redox regulation for AbSSADH activity. Hence, we demonstrated for the first time the dual functions of Cys291 in enhancing the nucleophilicity of the catalytic Cys289 and regulating a disulfide/sulfhydryl redox switch for AbSSADH catalysis. The mechanistic insights into the nucleophilicity enhancement of the catalytic cysteine of AbSSADH might be applicable to understanding how the microenvironment increases cysteine reactivity in other enzymes in the aldehyde dehydrogenase superfamily.


Assuntos
Cisteína , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/metabolismo , Cisteína/química , NAD/metabolismo , Catálise , Aldeído Desidrogenase/metabolismo , Compostos de Sulfidrila , Cinética
14.
Biophys Rev ; 14(3): 613-617, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35791386

RESUMO

Pimchai Chaiyen is a professor of School of Biomolecular Science and Engineering (BSE) at Vidyasirimedhi Institute of Science and Technology (VISTEC). She is among the most accomplished scientists in Thailand and in her research fields globally. Dr. Chaiyen trained as a mechanistic enzymologist at University of Michigan, Ann Arbor, under the guidance of David P. Ballou and the late Vincent Massey. She was an independent investigator at Mahidol University from 1997 to 2017. She then moved to VISTEC as founding dean of the BSE school. Dr. Chaiyen works on the broad areas of enzyme catalysis, enzyme engineering, systems biocatalysis, metabolic engineering, and synthetic biology. Her group investigates mechanisms of enzymatic reactions and metabolic pathways, and explores innovative applications of enzymes and metabolically engineered cells. Her team also works with local communities and the private sector to implement technologies promoting sustainability and circular economy. Dr. Chaiyen was a speaker at the Women in Science symposium at 20th IUPAB congress, 45th Annual SBBF meeting and 50th Annual SBBq meeting (held virtually in Brazil).

15.
Biotechnol J ; 17(6): e2100466, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35192744

RESUMO

Detection of cellular metabolites that are disease biomarkers is important for human healthcare monitoring and assessing prognosis and therapeutic response. Accurate and rapid detection of microbial metabolites and pathway intermediates is also crucial for the process optimization required for development of bioconversion methods using metabolically engineered cells. Various redox enzymes can generate electrons that can be employed in enzyme-based biosensors and in the detection of cellular metabolites. These reactions can directly transform target compounds into various readout signals. By incorporating engineered enzymes into enzymatic cascades, the readout signals can be improved in terms of accuracy and sensitivity. This review critically discusses selected redox enzymatic and chemoenzymatic cascades currently employed for detection of human- and microbe-related cellular metabolites including, amino acids, d-glucose, inorganic ions (pyrophosphate, phosphate, and sulfate), nitro- and halogenated phenols, NAD(P)H, fatty acids, fatty aldehyde, alkane, short chain acids, and cellular metabolites.


Assuntos
NAD , Fenóis , Humanos , Oxirredução
16.
Angew Chem Int Ed Engl ; 61(16): e202116908, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138676

RESUMO

D-Luciferin (D-LH2 ), a substrate of firefly luciferase (Fluc), is important for a wide range of bioluminescence applications. This work reports a new and green method using enzymatic reactions (HELP, HadA Enzyme for Luciferin Preparation) to convert 19 phenolic derivatives to 8 D-LH2 analogues with ≈51 % yield. The method can synthesize the novel 5'-methyl-D-LH2 and 4',5'-dimethyl-D-LH2 , which have never been synthesized or found in nature. 5'-Methyl-D-LH2 emits brighter and longer wavelength light than the D-LH2 . Using HELP, we further developed LUMOS (Luminescence Measurement of Organophosphate and Derivatives) technology for in situ detection of organophosphate pesticides (OPs) including parathion, methyl parathion, EPN, profenofos, and fenitrothion by coupling the reactions of OPs hydrolase and Fluc. The LUMOS technology can detect these OPs at parts per trillion (ppt) levels. The method can directly detect OPs in food and biological samples without requiring sample pretreatment.


Assuntos
Luciferina de Vaga-Lumes , Praguicidas , Luciferases de Vaga-Lume , Luciferinas , Luminescência , Medições Luminescentes/métodos
17.
J Chem Inf Model ; 62(2): 399-411, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34989561

RESUMO

Bacterial luciferase (Lux) catalyzes oxidation of reduced flavin mononucleotide (FMN) and aldehyde to form oxidized FMN and carboxylic acid via molecular oxygen with concomitant light generation. The enzyme is useful for various detection applications in biomedical experiments. Upon reacting with oxygen, the reduced FMN generates C4a-peroxy-FMN (FMNH-C4a-OO-) as a reactive intermediate, which is required for light generation. However, the mechanism and control of FMNH-C4a-OO- formation are not clear. This work investigated the reaction of FMNH-C4a-OO- formation in Lux using QM/MM methods. The B3LYP/6-31G*/CHARMM27 calculations indicate that Lux controls the formation of FMNH-C4a-OO- via the conserved His44 residue. The steps in intermediate formation are found to be as follows: (i) H+ reacts with O2 to generate +OOH. (ii) +OOH attacks C4a of FMNH- to generate FMNH-C4a-OOH. (iii) H+ is transferred from FMNH-C4a-OOH to His44 to generate FMNH-C4a-OO- while His44 stabilizes FMNH-C4a-OO- by forming a hydrogen bond to an oxygen atom. This controlling key mechanism for driving the change from FMNH-C4a-OOH to the FMNH-C4a-OO- adduct is confirmed because FMNH-C4a-OO- is more stable than FMNH-C4a-OOH in the luciferase active site.


Assuntos
Luciferases Bacterianas , Peróxidos , Flavinas/química , Flavinas/metabolismo , Cinética , Luciferases/metabolismo , Luciferases Bacterianas/química , Oxirredução
18.
Chembiochem ; 23(11): e202100666, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35040514

RESUMO

Specific flavoenzyme oxidases catalyze oxidative decarboxylation in addition to their classical oxidation reactions in the same active sites. The mechanisms underlying oxidative decarboxylation by these enzymes and how they control their two activities are not clearly known. This article reviews the current state of knowledge of four enzymes from the l-amino acid oxidase and l-hydroxy acid oxidase families, including l-tryptophan 2-monooxygenase, l-phenylalanine 2-oxidase and l-lysine oxidase/monooxygenase and lactate monooxygenase which catalyze substrate oxidation and oxidative decarboxylation. Apart from specific interactions to allow substrate oxidation by the flavin cofactor, specific binding of oxidized product in the active sites appears to be important for enabling subsequent decarboxylation by these enzymes. Based on recent findings of l-lysine oxidase/monooxygenase, we propose that nucleophilic attack of H2 O2 on the imino acid product is the mechanism enabling oxidative decarboxylation.


Assuntos
Oxigenases de Função Mista , Estresse Oxidativo , Catálise , Descarboxilação , Oxigenases de Função Mista/metabolismo , Oxirredução
19.
FEBS J ; 289(11): 3217-3240, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34967505

RESUMO

HpaR is a transcription regulator in the MarR family that controls the expression of the gene cluster responsible for conversion of p-hydroxyphenylacetate to pyruvate and succinate for cellular metabolism. Here, we report the biochemical and structural characterization of Acinetobacter baumannii HpaR (AbHpaR) and its complex with cognate DNA. Our study revealed that AbHpaR binds upstream of the divergently transcribed hpaA gene and the meta-cleavage operon, as well as the hpaR gene, thereby repressing their transcription by blocking access of RNA polymerase. Structural analysis of AbHpaR-DNA complex revealed that the DNA binding specificity can be achieved via a combination of both direct and indirect DNA sequence readouts. DNA binding of AbHpaR is weakened by 3,4-dihydroxyphenylacetate (DHPA), which is the substrate of the meta-cleavage reactions; this likely leads to expression of the target genes. Based on our findings, we propose a model for how A. baumannii controls transcription of HPA-metabolizing genes, which highlights the independence of global catabolite repression and could be beneficial for metabolic engineering toward bioremediation applications. DATABASES: The structural data that support these findings are openly available in the wwPDB at https://doi.org/10.2210/pdb7EL2/pdb and https://doi.org/10.2210/pdb7EL3/pdb for AbHpaR and AbHpaR-DNA complex, respectively.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Óperon , Ligação Proteica
20.
J Biol Chem ; 297(5): 101280, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624314

RESUMO

Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.


Assuntos
Acinetobacter baumannii/enzimologia , Cálcio/química , Frutose-Bifosfato Aldolase/química , Zinco/química , Proteínas de Bactérias , Catálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA