Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Subcell Biochem ; 101: 351-387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520313

RESUMO

Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.


Assuntos
Chaperonas Moleculares , Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Lisossomos , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Dobramento de Proteína , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteólise
2.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365744

RESUMO

Cell migration plays a vital role in both health and disease. It is driven by reorganization of the actin cytoskeleton, which is regulated by actin-binding proteins cofilin and profilin. Stress-inducible phosphoprotein 1 (STIP1) is a well-described co-chaperone of the Hsp90 chaperone system, and our findings identify a potential regulatory role of STIP1 in actin dynamics. We show that STIP1 can be isolated in complex with actin and Hsp90 from HEK293T cells and directly interacts with actin in vitro via the C-terminal TPR2AB-DP2 domain of STIP1, potentially due to a region spanning two putative actin-binding motifs. We found that STIP1 could stimulate the in vitro ATPase activity of actin, suggesting a potential role in the modulation of F-actin formation. Interestingly, while STIP1 depletion in HEK293T cells had no major effect on total actin levels, it led to increased nuclear accumulation of actin, disorganization of F-actin structures, and an increase and decrease in cofilin and profilin levels, respectively. This study suggests that STIP1 regulates the cytoskeleton by interacting with actin, or via regulating the ratio of proteins known to affect actin dynamics.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Profilinas/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Sequência de Aminoácidos , Imunofluorescência , Proteínas de Choque Térmico/química , Humanos , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
3.
Biochem Biophys Res Commun ; 527(2): 440-446, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334836

RESUMO

Heat-shock factor 1 (HSF1) regulates the transcriptional response to stress and controls expression of molecular chaperones required for cell survival. Here we report that HSF1 is regulated by the abundance of the Hsp70-Hsp90 organizing protein (Hop/STIP1). HSF1 levels were significantly reduced in Hop-depleted HEK293T cells. HSF1 transcriptional activity at the Hsp70 promoter, and binding of a biotinylated HSE oligonucleotide under both basal and heat-shock conditions were significantly reduced. Hop-depleted HEK293T cells were more sensitive to the HSF1 inhibitor KRIBB11 and showed reduced short-term proliferation, and reduced long-term survival under basal and heat-shock conditions. HSF1 nuclear localization was reduced in response to heat-shock and the nuclear staining pattern in Hop-depleted cells was punctate. Taken together, these data suggest that Hop regulates HSF1 function under both basal and stress conditions through a mechanism involving changes in levels, activity and subcellular localization, and coincides with reduced cellular fitness.


Assuntos
Deleção de Genes , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Proliferação de Células , Sobrevivência Celular , Células HEK293 , Proteínas de Choque Térmico/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...