Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(47): e202313243, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37804080

RESUMO

Here we develop Lateral Flow Assays (LFAs) that employ as functional elements DNA-based structures decorated with reporter tags and recognition elements. We have rationally re-engineered tile-based DNA tubular structures that can act as scaffolds and can be decorated with recognition elements of different nature (i.e. antigens, aptamers or proteins) and with orthogonal fluorescent dyes. As a proof-of-principle we have developed sandwich and competitive multiplex lateral flow platforms for the detection of several targets, ranging from small molecules (digoxigenin, Dig and dinitrophenol, DNP), to antibodies (Anti-Dig, Anti-DNP and Anti-MUC1/EGFR bispecific antibodies) and proteins (thrombin). Coupling the advantages of functional DNA-based scaffolds together with the simplicity of LFAs, our approach offers the opportunity to detect a wide range of targets with nanomolar sensitivity and high specificity.


Assuntos
Anticorpos Biespecíficos , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA/química , Oligonucleotídeos/química , Proteínas , Aptâmeros de Nucleotídeos/química
2.
Annu Rev Biophys ; 52: 319-337, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36737603

RESUMO

Cooperativity (homotropic allostery) is the primary mechanism by which evolution steepens the binding curves of biomolecular receptors to produce more responsive input-output behavior in biomolecular systems. Motivated by the ubiquity with which nature employs this effect, over the past 15 years we, together with other groups, have engineered this mechanism into several otherwise noncooperative receptors. These efforts largely aimed to improve the utility of such receptors in artificial biotechnologies, such as synthetic biology and biosensors, but they have also provided the first quantitative, experimental tests of longstanding ideas about the mechanisms underlying cooperativity. In this article, we review the literature on the design of this effect, paying particular attention to the design strategies involved, the extent to which each can be rationally applied to (and optimized for) new receptors, and what each teaches us about the origins and optimization of this important phenomenon.


Assuntos
Engenharia de Proteínas , Biologia Sintética
3.
ACS Sens ; 8(1): 150-157, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534756

RESUMO

Dose-limiting toxicity and significant patient-to-patient pharmacokinetic variability often render it difficult to achieve the safe and effective dosing of drugs. This is further compounded by the slow, cumbersome nature of the analytical methods used to monitor patient-specific pharmacokinetics, which inevitably rely on blood draws followed by post-facto laboratory analysis. Motivated by the pressing need for improved "therapeutic drug monitoring", we are developing electrochemical aptamer-based (EAB) sensors, a minimally invasive biosensor architecture that can provide real-time, seconds-resolved measurements of drug levels in situ in the living body. A key advantage of EAB sensors is that they are generalizable to the detection of a wide range of therapeutic agents because they are independent of the chemical or enzymatic reactivity of their targets. Three of the four therapeutic drug classes that have, to date, been shown measurable using in vivo EAB sensors, however, bind to nucleic acids as part of their mode of action, leaving open questions regarding the extent to which the approach can be generalized to therapeutics that do not. Here, we demonstrate real-time, in vivo measurements of plasma methotrexate, an antimetabolite (a mode of action not reliant on DNA binding) chemotherapeutic, following human-relevant dosing in a live rat animal model. By providing hundreds of drug concentration values, the resulting seconds-resolved measurements succeed in defining key pharmacokinetic parameters, including the drug's elimination rate, peak plasma concentration, and exposure (area under the curve), with unprecedented 5 to 10% precision. With this level of precision, we easily identify significant (>2-fold) differences in drug exposure occurring between even healthy rats given the same mass-adjusted methotrexate dose. By providing a real-time, seconds-resolved window into methotrexate pharmacokinetics, such measurements can be used to precisely "individualize" the dosing of this significantly toxic yet vitally important chemotherapeutic.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Ratos , Animais , Metotrexato , Técnicas Biossensoriais/métodos , Monitoramento de Medicamentos/métodos
4.
Chem Sci ; 13(41): 12219-12228, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36349092

RESUMO

Biosensors and bioassays, both of which employ proteins and nucleic acids to detect specific molecular targets, have seen significant applications in both biomedical research and clinical practice. This success is largely due to the extraordinary versatility, affinity, and specificity of biomolecular recognition. Nevertheless, these receptors suffer from an inherent limitation: single, saturable binding sites exhibit a hyperbolic relationship (the "Langmuir isotherm") between target concentration and receptor occupancy, which in turn limits the sensitivity of these technologies to small variations in target concentration. To overcome this and generate more responsive biosensors and bioassays, here we have used the sequestration mechanism to improve the steepness of the input/output curves of several bioanalytical methods. As our test bed for this we employed sensors and assays against neutrophil gelatinase-associated lipocalin (NGAL), a kidney biomarker for which enhanced sensitivity will improve the monitoring of kidney injury. Specifically, by introducing sequestration we have improved the responsiveness of an electrochemical aptamer based (EAB) biosensor, and two bioassays, a paper-based "dipstick" assay and an enzyme-linked immunosorbent assay (ELISA). Doing so we have narrowed the dynamic range of these sensors and assays several-fold, thus enhancing their ability to measure small changes in target concentration. Given that introducing sequestration requires only the addition of the appropriate concentration of a high-affinity "depletant," the mechanism appears simple and easily adaptable to tuning the binding properties of the receptors employed in a wide range of biosensors and bioassays.

5.
Chem Commun (Camb) ; 57(88): 11693-11696, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34673866

RESUMO

Electrochemical aptamer-based (EAB) sensors, composed of an electrode-bound DNA aptamer with a redox reporter on the distal end, offer the promise of high-frequency, real-time molecular measurements in complex sample matrices and even in vivo. Here we assess the extent to which switching the aptamer terminus that is electrode-bound and the one that is redox-reporter-modified affects the performance of these sensors. Using sensors against doxorubicin, cocaine, and vancomycin as our test beds, we find that both signal gain (the relative signal change seen in the presence of a saturating target) and the frequency dependence of gain depend strongly on the attachment orientation, suggesting that this easily investigated variable is a worthwhile parameter to optimize in the design of new EAB sensors.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Aptâmeros de Nucleotídeos/síntese química , Cocaína/química , Doxorrubicina/química , Eletrodos , Oxirredução , Vancomicina/química
6.
Biosens Bioelectron ; 107: 62-68, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438908

RESUMO

In this work, we propose for the first time the use of anodic aluminum oxide (AAO) nanoporous membranes for in situ monitoring of parathyroid hormone-like hormone (PTHLH) secretion in cultured human cells. The biosensing system is based on the nanochannels blockage upon immunocomplex formation, which is electrically monitored through the voltammetric oxidation of Prussian blue nanoparticles (PBNPs). Models evaluated include a neuroblastoma cell line (SK-N-AS) and immortalized keratinocytes (HaCaT) as a control of high PTHLH production. The effect of total number of seeded cells and incubation time on the secreted PTHLH levels is assessed, finding that secreted PTHLH levels range from approximately 60 to 400 ng/mL. Moreover, our methodology is also applied to analyse PTHLH production following PTHLH gene knockdown upon transient cell transfection with a specific silencing RNA (siRNA). Given that inhibition of PTHLH secretion reduces cell proliferation, survival and invasiveness in a number of tumors, our system provides a powerful tool for the preclinical evaluation of therapies that regulate PTHLH production. This nanoporous membrane - based sensing technology might be useful to monitor the active secretion of other proteins as well, thus contributing to characterize their regulation and function.


Assuntos
Técnicas Biossensoriais/instrumentação , Membranas Artificiais , Nanoporos/ultraestrutura , Neuroblastoma/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Proteína Relacionada ao Hormônio Paratireóideo/análise
7.
Nanobiomedicine (Rij) ; 3: 1849543516663574, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29942385

RESUMO

Medical diagnosis has been greatly improved thanks to the development of new techniques capable of performing very sensitive detection and quantifying certain parameters. These parameters can be correlated with the presence of specific molecules and their quantity. Unfortunately, these techniques are demanding, expensive, and often complicated. On the other side, progress in other fields of science and technology has contributed to the rapid growth of nanotechnology. Although being an emerging discipline, nanotechnology has raised huge interest and expectations. Most of the enthusiasm comes from new possibilities and properties of nanomaterials. Biosensors (simple, robust, sensitive, cost-effective) combined with nanomaterials, also called nanobiosensors, are serving as bridge between advanced detection/diagnostics and daily/routine tests. Here we review some of the latest applications of nanobiosensors in diagnostics field.

8.
Nanomedicine ; 12(1): 53-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26492976

RESUMO

Parathyroid hormone-like hormone (PTHLH) exerts relevant roles in progression and dissemination of several tumors. However, factors influencing its production and secretion have not been fully characterized. The main limitation is the lack of specific, sensitive and widely available techniques to detect and quantify PTHLH. We have developed a lateral flow immunoassay using gold nanoparticles label for the fast and easy detection of PTHLH in lysates and culture media of three human cell lines (HaCaT, LA-N-1, SK-N-AS). Levels in culture media and lysates ranged from 11 to 20 ng/mL and 0.66 to 0.87 µg/mL respectively. Results for HaCaT are in agreement to the previously reported, whereas LA-N-1 and SK-N-AS have been evaluated for the first time. The system also exhibits good performance in human serum samples. This methodology represents a helpful tool for future in vitro and in vivo studies of mechanisms involved in PTHLH production as well as for diagnostics. From the Clinical Editor: Parathyroid Hormone-like Hormone (PTHLH) is known to be secreted by some tumors. However, the detection of this peptide remains difficult. The authors here described their technique of using gold nanoparticles as label for the detection of PTHLH by Lateral-flow immunoassays (LFIAs). The positive results may also point a way to using the same technique for the rapid determination of other relevant cancer proteins.


Assuntos
Imunoensaio/instrumentação , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/imunologia , Hormônio Paratireóideo/análise , Biomarcadores Tumorais/imunologia , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Falha de Equipamento , Ouro/química , Humanos , Nanopartículas Metálicas/ultraestrutura , Hormônio Paratireóideo/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Biosens Bioelectron ; 67: 53-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24953452

RESUMO

A new gold nanoparticle (AuNP) based detection strategy using Electrochemical Impedance Spectroscopy (EIS) through hydrogen evolution reaction (HER) is proposed. This EIS-HER method is used as an alternative to the conventional EIS based on [Fe(CN)6](3-/4-) or [Ru(NH3)6](3+/2+) indicators. The proposed method is based on the HER induced by AuNPs. EIS measurements for different amounts of AuNP are registered and the charge transfer resistance (Rct) was found to correlate and be useful for their quantification. Moreover the effect of AuNP size on electrical properties of AuNPs for HER using this sensitive technique has been investigated. Different EIS-HER signals generated in the presence of AuNPs of different sizes (2, 5, 10, 15, 20, and 50 nm) are observed, being the corresponding phenomena extendible to other nanoparticles and related catalytic reactions. This EIS-HER sensing technology is applied to a magneto-immunosandwich assay for the detection of a model protein (IgG) achieving improvements of the analytical performance in terms of a wide linear range (2-500 ng mL(-1)) with a good limit of detection (LOD) of 0.31 ng mL(-1) and high sensitivity. Moreover, with this methodology a reduction of one order of magnitude in the LOD for IgG detection, compared with a chroamperometric technique normally used was achieved.


Assuntos
Técnicas Biossensoriais , Hidrogênio/química , Imunoglobulina G/isolamento & purificação , Técnicas Eletroquímicas , Ouro/química , Humanos , Imunoglobulina G/imunologia , Separação Imunomagnética , Nanopartículas Metálicas/química
10.
J Mater Chem B ; 3(26): 5166-5171, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262591

RESUMO

An impedimetric label-free genosensor for high sensitive DNA detection is developed. This system is based on a screen-printed carbon electrode modified with the thionine layer and iridium oxide nanoparticles (IrO2 NP). An aminated oligonucleotide probe is immobilized on the IrO2 NP/polythionine modified electrode and ethanolamine was used as a blocking agent. Different diluted PCR amplified DNA samples have been detected. The selectivity and reproducibility of this system are studied and the system was highly reproducible with RSD ≈ 15% and sensitive enough while using 2% of ethanolamine during the blocking step employed for genosensor preparation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...