Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 181: 362-374, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38663684

RESUMO

Ferroptosis induced by lipid peroxide (LPO) accumulation is an effective cell death pathway for cancer therapy. However, how to effectively induce ferroptosis at tumor sites and improve its therapeutic effectiveness remains challenging. Here, MnFe2O4@NaGdF4@NLG919@HA (MGNH) nanocomplex with tumor-specific targeting and TME response is constructed to overcome immunosuppressive tumor microenvironment (TME) to potentiate the curative effect of ferroptosis by coupling the immune checkpoint indoleamine 2,3-dioxygenase (IDO) inhibitor, NLG919, and hyaluronic acid (HA) to novel ultra-small MnFe2O4@NaGdF4 (MG) nanoparticles with a Janus structure. Firstly, tumor site-precise delivery of MG and NLG919 is achieved with HA targeting. Secondly, MG acts as a magnetic resonance imaging contrast agent, which not only has a good photothermal effect to realize tumor photothermal therapy, but also depletes glutathione and catalyzes the production of reactive oxygen species from endogenous H2O2, which effectively promotes the accumulation of LPO and inhibits the expression of glutathione peroxidase 4, achieving enhanced ferroptosis. Thirdly, NLG919 inhibits the differentiation of Tregs by blocking the tryptophan/kynurenine immune escape pathway, thereby reversing immunosuppressive TME together with the Mn2+-activated cGAS-STING pathway. This work contributes new perspectives for the development of novel ultra-small Janus nanoparticles to reshape immunosuppressive TME and ferroptosis activation. STATEMENT OF SIGNIFICANCE: The Janus structured MnFe2O4@NaGdF4@NLG919@HA (MGNH) nanocomplex was synthesized, which can realize the precise delivery of T1/T2 contrast agents MnFe2O4@NaGdF4 (MG) and NLG919 at the tumor site under the ultra-small Janus structural characteristics and targeted molecule HA. The production of ROS, consumption of GSH, and photothermal properties of MGNH make it possible for CDT/PTT activated ferroptosis, and synergistically disrupt and reprogram tumor growth and immunosuppressive tumor microenvironment with NLG919 and Mn2+-mediated activation of cGAS-STING pathway, achieving CDT/PTT/immunotherapy activated by ferroptosis. Meanwhile, ultra-small structural properties of MGNH facilitate subsequent metabolic clearance by the body, allowing for the minimization of potential biotoxicity associated with its prolonged retention.


Assuntos
Ferroptose , Imunoterapia , Nanopartículas , Microambiente Tumoral , Ferroptose/efeitos dos fármacos , Imunoterapia/métodos , Animais , Nanopartículas/química , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Cicloexilaminas/farmacologia , Cicloexilaminas/química , Imidazóis , Isoindóis
2.
Opt Express ; 32(2): 2162-2178, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297752

RESUMO

An improved phase generated carrier arctangent demodulation algorithm based on harmonic mixing and phase quadrature technology (PGC-Arctan-HP) is proposed in this paper, which can eliminate the effects of modulation depth shift, carrier phase delay, and light intensity disturbance (LID) on the demodulation results. The simulation results are consistent with theoretical analysis, and indicate that the PGC-Arctan-HP algorithm can achieve optimal demodulation compared with other demodulation algorithms. The results of interferometric experiments show that the demodulated waveforms of the improved algorithm are relatively stable with an amplitude error of 0.0294%. The total-harmonic-distortion (THD) and the signal-to-noise-and-distortion (SINAD) can reach -60.0286 dB and 59.5388 dB.

3.
Dalton Trans ; 53(2): 552-563, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38054240

RESUMO

Ferrocenyl derivatives and organometallic iridium(III) complexes have been prospective substitutes for platinum-based anticancer drugs. Eight half-sandwich iridium(III) ferrocene-thiosemicarbazide (Fc-TSC) Schiff base anticancer complexes were prepared in this study. These complexes displayed a dimeric structure and exhibited a particular fluorescence due to the "enol" orientation of the TSC pro-ligand. An energy-dependent pathway of the uptake mechanism was ascertained, which ended in the lysosome and led to lysosome damage and apoptosis. Flow cytometry confirmed that the complexes could block the cell cycle (G1 phase) and improve the levels of intracellular reactive oxygen species, indicating an anticancer mechanism of oxidation. Then, a lysosomal-mitochondrial anticancer pathway was verified through western blotting. In vivo toxicity assays confirmed that these complexes showed better anti-migration ability and less toxicity in comparison to cisplatin. Thus, these complexes provide a new strategy for the design of non-platinum organometallic anticancer drugs.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio/farmacologia , Irídio/química , Bases de Schiff/farmacologia , Metalocenos/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Estudos Prospectivos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
4.
Plants (Basel) ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068630

RESUMO

Wheat leaf rust, caused by the obligate biotrophic fungus Puccinia triticina Eriks. (Pt), is one of the most common wheat foliar diseases that continuously threatens global wheat production. Currently, the approaches used to mitigate pathogen infestation include the application of fungicides and the deployment of resistance genes or cultivars. However, the continuous deployment of selected resistant varieties causes host selection pressures that drive Pt evolution and promote the incessant emergence of new virulent races, resulting in the demise of wheat-resistant cultivars after several years of planting. Intriguingly, diploid wheat accessions were found to confer haustorium formation-based resistance to leaf rust, which involves prehaustorial and posthaustorial resistance mechanisms. The prehaustorial resistance in the interaction between einkorn and wheat leaf rust is not influenced by specific races of the pathogen. The induced defense mechanism, known as systemic acquired resistance, also confers durable resistance against a wide array of pathogens. This review summarizes the host range, pathogenic profile, and evolutionary basis of Pt; the molecular basis underlying wheat-Pt interactions; the cloning and characterization of wheat leaf rust resistance genes; prehaustorial and posthaustorial resistance; systemic acquired resistance; and the role of reactive oxygen species. The interplay between climatic factors, genetic features, planting dates, and disease dynamics in imparting resistance is also discussed.

5.
J Mech Behav Biomed Mater ; 146: 106056, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573762

RESUMO

Inspired by the orientation and the fibrous structure of human muscle tissues, we fabricated preconstructed porous liquid crystalline (LC) scaffolds through a two-step polymerization and salt leaching method. A novel strategy combining the aligning properties of LCs and the ease of processing of elastomers for the preparation of elliptical scaffolds for muscle cell culture was proposed in this research. Different from the other types of scaffolds, our biocompatible LC scaffold that can be implanted into the human body using a supporting unit to improve the mechanical properties compared with those of natural muscle. To evaluate the synthesized scaffolds, in vitro experiments using normal human dermal fibroblast (NHDF) cells and smooth muscle cells from rats were carried out, and the sample cells were cultured on each sample scaffold. Based on the results of long-term culture of NHDF cells on the LC scaffolds, it can be confirmed that all three kinds of LC scaffolds have good biocompatibility and provide enough space for cell growth. The addition of gelatin can significantly enhance the biocompatibility of the synthesized scaffolds. Evaluation of scaffold morphologies on cell growth indicates that the molecular arrangement on the scaffolds can induce the growth direction of smooth muscle cells to a certain extent, thereby increasing the formation of highly ordered arrangement tissues. The population doubling time of NHDF cells on the different scaffolds suggest that gelatin can improve the attachment and growth of cells. Investigation of cell viability on LC scaffolds shows that the original LC scaffolds already possess excellent biocompatibility. Additionally, the average cell viability of smooth muscle cells was above 90%, showing that the LC scaffolds in this research are suitable for application in muscle tissue engineering. Based on the results, the gelatin-coated scaffolds are more conducive to the growth of cells in this research and provide promising candidates for tissue engineering in biomedical fields and research fields.


Assuntos
Gelatina , Alicerces Teciduais , Ratos , Humanos , Animais , Alicerces Teciduais/química , Gelatina/química , Engenharia Tecidual/métodos , Elastômeros , Técnicas de Cultura de Células , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
6.
Front Plant Sci ; 14: 1335646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264029

RESUMO

Chitin/polysaccharide deacetylases belong to the carbohydrate esterases family 4 (CE4 enzymes). They play a crucial role in modifying the physiochemical characteristics of structural polysaccharides and are also involved in a wide range of biological processes such as fungal autolysis, spore formation, cell wall formation and integrity, and germling adhesion. These enzymes are mostly common in fungi, marine bacteria, and a limited number of insects. They facilitate the deacetylation of chitin which is a structural biopolymer that is abundantly found in fungal cell walls and spores and also in the cuticle and peritrophic matrices of insects. The deacetylases exhibit specificity towards a substrate containing a sequence of four GlcNAc units, with one of these units being subjected to deacetylation. Chitin deacetylation results in the formation of chitosan, which is a poor substrate for host plant chitinases, therefore it can suppress the host immune response triggered by fungal pathogens and enhance pathogen virulence and colonization. This review discusses plant pathogenic fungal chitin/polysaccharide deacetylases including their structure, substrate specificity, biological roles and some recently discovered chitin deacetylase inhibitors that can help to mitigate plant fungal diseases. This review provides fundamental knowledge that will undoubtedly lead to the rational design of novel inhibitors that target pathogenic fungal chitin deacetylases, which will also aid in the management of plant diseases, thereby safeguarding global food security.

7.
Front Plant Sci ; 13: 951095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311120

RESUMO

Wheat is one of the most important staple foods on earth. Leaf rust, stem rust and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia f. sp. striiformis, respectively, continue to threaten wheat production worldwide. Utilization of resistant cultivars is the most effective and chemical-free strategy to control rust diseases. Convectional and molecular biology techniques identified more than 200 resistance genes and their associated markers from common wheat and wheat wild relatives, which can be used by breeders in resistance breeding programmes. However, there is continuous emergence of new races of rust pathogens with novel degrees of virulence, thus rendering wheat resistance genes ineffective. An integration of genomic selection, genome editing, molecular breeding and marker-assisted selection, and phenotypic evaluations is required in developing high quality wheat varieties with resistance to multiple pathogens. Although host genotype resistance and application of fungicides are the most generally utilized approaches for controlling wheat rusts, effective agronomic methods are required to reduce disease management costs and increase wheat production sustainability. This review gives a critical overview of the current knowledge of rust resistance, particularly race-specific and non-race specific resistance, the role of pathogenesis-related proteins, non-coding RNAs, and transcription factors in rust resistance, and the molecular basis of interactions between wheat and rust pathogens. It will also discuss the new advances on how integrated rust management methods can assist in developing more durable resistant cultivars in these pathosystems.

8.
J Inorg Biochem ; 237: 112010, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152469

RESUMO

Ferrocenyl derivatives and half-sandwich iridium(III) complexes have received extensive attention in the field of anticancer. In this paper, series of configuration-controlled ferrocene-modified half-sandwich iridium(III) pyridine complexes were prepared. The combination of half-sandwich iridium(III) complexes and ferrocenyl unit successfully improved the anticancer activity of these complexes, especially for trans-configurational one towards A549 cells, and the best-performing (FeIr5) was almost 3.5 times more potent than that of cisplatin. In addition, these complexes could inhibit the migration of A549 cells. Complexes can accumulate in intracellular lysosomes (PCC: >0.75), induce lysosomal damage, disturb the cell circle, decrease the mitochondrial membrane potential, improve the intracellular reactive oxygen species (ROS) levels, and eventually lead to apoptosis. Meanwhile, complexes could bind to serum protein following a static quenching mechanism and transport through it. Then, ferrocene-modified half-sandwich iridium(III) pyridine complexes hold the promise as potential organometallic anticancer agents for further investigation.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio/farmacologia , Metalocenos/farmacologia , Complexos de Coordenação/farmacologia , Antineoplásicos/farmacologia , Apoptose , Piridinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
9.
Front Microbiol ; 13: 799396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722337

RESUMO

Biotrophic plant pathogenic fungi are widely distributed and are among the most damaging pathogenic organisms of agriculturally important crops responsible for significant losses in quality and yield. However, the pathogenesis of obligate parasitic pathogenic microorganisms is still under investigation because they cannot reproduce and complete their life cycle on an artificial medium. The successful lifestyle of biotrophic fungal pathogens depends on their ability to secrete effector proteins to manipulate or evade plant defense response. By integrating genomics, transcriptomics, and effectoromics, insights into how the adaptation of biotrophic plant fungal pathogens adapt to their host populations can be gained. Efficient tools to decipher the precise molecular mechanisms of rust-plant interactions, and standardized routines in genomics and functional pipelines have been established and will pave the way for comparative studies. Deciphering fungal pathogenesis not only allows us to better understand how fungal pathogens infect host plants but also provides valuable information for plant diseases control, including new strategies to prevent, delay, or inhibit fungal development. Our review provides a comprehensive overview of the efforts that have been made to decipher the effector proteins of biotrophic fungal pathogens and demonstrates how rapidly research in the field of obligate biotrophy has progressed.

10.
J Fungi (Basel) ; 9(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36675825

RESUMO

Fungal plant pathogens use proteinaceous effectors as well as newly identified secondary metabolites (SMs) and small non-coding RNA (sRNA) effectors to manipulate the host plant's defense system via diverse plant cell compartments, distinct organelles, and many host genes. However, most molecular studies of plant-fungal interactions have focused on secreted effector proteins without exploring the possibly equivalent functions performed by fungal (SMs) and sRNAs, which are collectively known as "non-proteinaceous effectors". Fungal SMs have been shown to be generated throughout the plant colonization process, particularly in the early biotrophic stages of infection. The fungal repertoire of non-proteinaceous effectors has been broadened by the discovery of fungal sRNAs that specifically target plant genes involved in resistance and defense responses. Many RNAs, particularly sRNAs involved in gene silencing, have been shown to transmit bidirectionally between fungal pathogens and their hosts. However, there are no clear functional approaches to study the role of these SM and sRNA effectors. Undoubtedly, fungal SM and sRNA effectors are now a treasured land to seek. Therefore, understanding the role of fungal SM and sRNA effectors may provide insights into the infection process and identification of the interacting host genes that are targeted by these effectors. This review discusses the role of fungal SMs and sRNAs during plant-fungal interactions. It will also focus on the translocation of sRNA effectors across kingdoms, the application of cross-kingdom RNA interference in managing plant diseases and the tools that can be used to predict and study these non-proteinaceous effectors.

11.
Front Plant Sci ; 13: 1098549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726676

RESUMO

Wheat leaf rust, caused by Puccinia triticina Eriks. (Pt), is a global wheat disease threatening wheat production. Dissecting how Pt effector proteins interact with wheat has great significance in understanding the pathogenicity mechanisms of Pt. In the study, the cDNA of Pt 13-5-72 interacting with susceptible cultivar Thatcher was used as template to amplify Pt13024 gene. The expression pattern and structure of Pt13024 were analyzed by qRT-PCR and online softwares. The secretion function of Pt13024 signal peptide was verified by the yeast system. Subcellular localization of Pt13024 was analyzed using transient expression on Nicotiana benthamiana. The verification that Pt13024 inhibited programmed cell death (PCD) was conducted on N. benthamiana and wheat. The deletion mutation of Pt13024 was used to identify the virulence function motif. The transient transformation of wheat mediated by the type III secretion system (TTSS) was used to analyze the activity of regulating the host defense response of Pt13024. Pt13024 gene silencing was performed by host-induced gene silencing (HIGS). The results showed that Pt13024 was identified as an effector and localized in the cytoplasm and nucleus on the N. benthamiana. It can inhibit PCD induced by the Bcl-2-associated X protein (BAX) from mice and infestans 1 (INF1) from Phytophthora infestans on N. benthamiana, and it can also inhibit PCD induced by DC3000 on wheat. The amino acids 22 to 41 at N-terminal of the Pt13024 are essential for the inhibition of programmed cell death (PCD) induced by BAX. The accumulation of reactive oxygen species and deposition of callose in near-isogenic line TcLr30, which is in Thatcher background with Lr30, induced by Pt13024 was higher than that in 41 wheat leaf rust-resistant near-isogenic lines (monogenic lines) with different resistance genes and Thatcher. Silencing of Pt13024 reduced the leaf rust resistance of Lr30 during the interaction between Pt and TcLr30. We can conclude that Pt13024 is avirulent to TcLr30 when Pt interacts with TcLr30. These findings lay the foundation for further investigations into the role of Pt effector proteins in pathogenesis and their regulatory mechanisms.

12.
Front Plant Sci ; 13: 1102908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589137

RESUMO

Wheat powdery mildew caused by a biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a widespread airborne disease which continues to threaten global wheat production. One of the most chemical-free and cost-effective approaches for the management of wheat powdery mildew is the exploitation of resistant cultivars. Accumulating evidence has reported that more than 100 powdery mildew resistance genes or alleles mapping to 63 different loci (Pm1-Pm68) have been identified from common wheat and its wild relatives, and only a few of them have been cloned so far. However, continuous emergence of new pathogen races with novel degrees of virulence renders wheat resistance genes ineffective. An essential breeding strategy for achieving more durable resistance is the pyramiding of resistance genes into a single genotype. The genetics of host-pathogen interactions integrated with temperature conditions and the interaction between resistance genes and their corresponding pathogen a virulence genes or other resistance genes within the wheat genome determine the expression of resistance genes. Considerable progress has been made in revealing Bgt pathogenesis mechanisms, identification of resistance genes and breeding of wheat powdery mildew resistant cultivars. A detailed understanding of the molecular interactions between wheat and Bgt will facilitate the development of novel and effective approaches for controlling powdery mildew. This review gives a succinct overview of the molecular basis of interactions between wheat and Bgt, and wheat defense mechanisms against Bgt infection. It will also unleash the unsung roles of epigenetic processes, autophagy and silicon in wheat resistance to Bgt.

13.
Sci Rep ; 9(1): 20103, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882813

RESUMO

Neurological diseases have a close relationship to excessive reactive oxygen species (ROS). Neuroglobin (Ngb), an intrinsic protective factor, protected cells from hypoxic/ischemic injury. In the present, we reported a novel neuroprotective manganese porphyrin reconstituted metal protein, Mn-TAT PTD-Ngb, consisting of a HIV Tat protein transduction domain sequence (TAT PTD) attached to the N-terminal of apo-Ngb. Mn-TAT PTD-Ngb had a stronger ROS scavenging ability than that of TAT PTD-Ngb, and reduced intracellular ROS production and restored the function of the mitochondria and inhibited the mitochondria-dependent apoptosis. Besides, Mn-TAT PTD-Ngb activated the phosphoinositide-3 kinase (PI3K)/Akt signaling pathway, which up-regulated the expression of nuclear factor E2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase (CAT). The results showed that the redox chemistry of Mn-TAT PTD-Ngb and redox regulation of multiple signaling pathways attenuated the oxidative injury.


Assuntos
Oxirredução , Estresse Oxidativo , Protoporfirinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Apoptose , Humanos , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Protoporfirinas/genética , Proteínas Recombinantes de Fusão/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...