Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Angew Chem Int Ed Engl ; : e202408123, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871650

RESUMO

We herein report a fundamental mechanistic investigation into photochemical metal-nitrenoid generation and inner-sphere transposition reactivity using organometallic photoprecursors. By designing Cp*Ir(hydroxamate)(Ar) complexes, we induced photo-initiated ligand activation, allowing us to explore the amidative σ(Ir-aryl) migration reactivity. A combination of experimental mechanistic studies, femtosecond transient absorption spectroscopy, and density functional theory (DFT) calculations revealed that the metal-to-ligand charge transfer enables the σ(N-O) cleavage, followed by Ir-acylnitrenoid generation. The final inner-sphere σ(Ir-aryl) group migration results in a net amidative group transposition.

3.
Nat Commun ; 15(1): 3788, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710673

RESUMO

In recent decades, strategies involving transition-metal catalyzed carbon-carbon or carbon-heteroatom bond coupling have emerged as potent synthetic tools for constructing intricate molecular architectures. Among these, decarboxylative carbon-nitrogen bond formation using abundant carboxylic acids or their derivatives has garnered notable attention for accessing alkyl- or arylamines, one of key pharmacophores. While several decarboxylative amination methods have been developed, the involvement of a common carboradical intermediate currently poses challenges in achieving stereospecific transformation toward chiral alkylamines. Herein, we present a base-mediated, stereoretentive decarboxylative amidation by harnessing 1,4,2-dioxazol-5-one as a reactive and robust amidating reagent under transition-metal-free ambient conditions, encompassing all types of primary, secondary and tertiary carboxylic acids, thereby providing access to the important pharmacophore, α-chiral amines. This method exhibits high functional group tolerance, convenient scalability, and ease of applicability for 15N-isotope labeling, thus accentuating its synthetic utilities. Experimental and computational mechanistic investigations reveal a sequence of elementary steps: i) nucleophilic addition of carboxylate to dioxazolone, ii) rearrangement to form a dicarbonyl N-hydroxy intermediate, iii) conversion to hydroxamate, followed by a Lossen-type rearrangement, and finally, iv) reaction of the in situ generated isocyanate with carboxylate leading to C-N bond formation in a stereoretentive manner.

4.
J Am Chem Soc ; 146(21): 14745-14753, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38742738

RESUMO

We herein describe a Ni-catalyzed formal hydroamidation of readily available α,ß-unsaturated carbonyl compounds to afford valuable chiral ß-amino acid derivatives (up to >99:1 e.r.) using dioxazolones as a robust amino source. A wide range of alkyl-substituted olefins conjugated to esters, amides, thioesters, and ketones were successfully amidated at the ß-position with excellent enantioselectivity for the first time. Combined experimental and computational mechanistic studies supported our working hypothesis that this unconventional ß-amidation of unsaturated carbonyl substrates can be attributed to the polar-matched migratory olefin insertion of an (amido)(Cl)NiII intermediate, in situ generated from the dioxazolone precursor.

5.
Angew Chem Int Ed Engl ; 63(24): e202401388, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38589725

RESUMO

The development of site-selective functionalization of N-heteroarenes is highly desirable in streamlined synthesis. In this context, direct amination of pyridines stands as an important synthetic methodology, with particular emphasis on accessing 4-aminopyridines, a versatile pharmacophore in medicinal chemistry. Herein, we report a reaction manifold for the C4-selective amination of pyridines by employing nucleophilic substitution of hydrogen (SNH). Through 4-pyridyl pyridinium salt intermediates, 4-aminopyridine products are obtained in reaction with aqueous ammonia without intermediate isolation. The notable regioselectivity was achieved by the electronic tuning of the external pyridine reagents along with the maximization of polarizability in the proton elimination stage. Further mechanistic investigations provided a guiding principle for the selective C-H pyridination of additional N-heteroarenes, presenting a strategic avenue for installation of diverse functional groups.

6.
J Am Chem Soc ; 146(1): 1001-1008, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109265

RESUMO

The photoredox/Ni dual catalysis is an appealing strategy to enable unconventional C-heteroatom bond formation. While significant advances have been achieved using this system, intermolecular C(sp3)-N bond formation has been relatively underdeveloped due to the difficulty in C(sp3)-N reductive elimination. Herein, we present a new mechanistic approach that utilizes dioxazolones as the Ni(II)-nitrenoid precursor to capture carbon-centered radicals by merging proton-coupled electron transfer (PCET) with nickel catalysis, thus forming synthetically versatile N-alkyl amides using alcohols. Based on mechanistic investigations, the involvement of (κ2-N,O)Ni(II)-nitrenoid species was proposed to capture photoredox PCET-induced alkyl radicals, thereby playing a pivotal role to enable the C(sp3)-N bond formation.

7.
J Am Chem Soc ; 145(51): 28251-28263, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100053

RESUMO

Harnessing the key intermediates in metal-catalyzed reactions is one of the most essential strategies in the development of selective organic transformations. The nitrogen group transfer reactivity of metal-nitrenoids to ubiquitous C-H bonds allows for diverse C-N bond formation to furnish synthetically valuable aminated products. In this study, we present an unprecedented reactivity of iridium and ruthenium nitrenoids to generate remote carbocation intermediates, which subsequently undergo nucleophile incorporation, thus developing a formal γ-C-H functionalization of carboxylic acids. Mechanistic investigations elucidated a unique singlet metal-nitrenoid reactivity to initiate an abstraction of γ-hydride to form the carbocation intermediate that eventually reacts with a broad range of carbon, nitrogen, and oxygen nucleophiles, as well as biorelevant molecules. Alternatively, the same intermediate can lead to deprotonation to afford ß,γ-unsaturated amides in a less nucleophilic solvent.

8.
J Am Chem Soc ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926946

RESUMO

Ring-fused azacyclic compounds are important building units in the synthesis of biorelevant natural products, pharmaceutical agents, and molecular materials. Herein, we present a new approach to these condensed azacycles by a biomimetic cascade cyclization of arylalkenyl dioxazolones. This cascade reaction was found to proceed with excellent stereoselectivity and a high functional group tolerance. The substrate scope of arylalkenyl dioxazolones turned out to be highly flexible and extendable to additional terminating subunits, such as heteroaryl and alkynyl moieties. This biomimetic cyclization was elucidated to be initiated by an intramolecular transfer of the in situ generated electrophilic Ir-acylnitrenoid to the tethered olefinic double bond, leading to a key N-acylaziridine intermediate, which is in turn reacted with pendant (hetero)arenes or alkynes in a highly regio- and stereoselective manner to produce ring-fused azacyclic compounds.

9.
J Am Chem Soc ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906814

RESUMO

Hydroamination facilitated by metal hydride catalysis is an appealing synthetic approach to access valuable nitrogen-containing compounds from readily available unsaturated hydrocarbons. While high regioselectivity can be achieved usually for substrates bearing polar chelation groups, the reaction involving simple alkenes frequently provides nonselective outcomes. Herein, we report an iridium-catalyzed highly regioselective terminal C(sp3)-H amidation of internal alkenes utilizing dioxazolones as an amino source via olefin chain walking. Most notably, this mechanistic motif of double bond migration to the terminal position operates not only with dialkyl-substituted simple alkenes including styrenes but also with heteroatom-substituted olefins such as enol ethers, vinyl silanes, and vinyl borons, thus representing the first example of the terminal methyl amidation of the latter type of alkenes through a nondissociative chain walking process.

10.
Science ; 381(6657): 525-532, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37471480

RESUMO

Rhodium (Rh) acylnitrene complexes are widely implicated in catalytic C-H amidation reactions but have eluded isolation and structural characterization. To overcome this challenge, we designed a chromophoric octahedral Rh complex with a bidentate dioxazolone ligand, in which photoinduced metal-to-ligand charge transfer initiates catalytic C-H amidation. X-ray photocrystallographic analysis of the Rh-dioxazolone complex allowed structural elucidation of the targeted Rh-acylnitrenoid and provided firm evidence that the singlet nitrenoid species is primarily responsible for acylamino transfer reactions. We also monitored in crystallo reaction of a nucleophile with the in situ-generated Rh-acylnitrenoid, which provided a crystallographically traceable reaction system to capture mechanistic snapshots of nitrenoid transfer.

11.
J Am Chem Soc ; 145(29): 16238-16248, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462685

RESUMO

Controlling regio- and enantioselectivity in C-H functionalization reactions is of paramount importance due to their versatile synthetic utilities. Herein, we describe a new approach for the asymmetric δ-C(sp3)-H amidation catalysis of dioxazolones using a Cu(I) precursor with a chiral bisoxazoline ligand to access six-membered lactams with high to excellent regio- and enantioselectivity (up to >19:1 rr and >99:1 er). Combined experimental and computational mechanistic studies unveiled that the open-shell character of the postulated Cu-nitrenoids enables the regioselective hydrogen atom abstraction and subsequent enantio-determining radical rebound of the resulting carbon radical intermediates. The synthetic utility of this asymmetric cyclization was demonstrated in the diastereoselective introduction of additional functional groups into the chiral δ-lactam skeleton as well as in the rapid access to biorelevant azacyclic compounds.

12.
Nat Chem ; 15(8): 1091-1099, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37365339

RESUMO

Photocycloaddition is a powerful reaction to enable the conversion of alkenes into high-value synthetic materials that are normally difficult to obtain under thermal conditions. Lactams and pyridines, both prominent in pharmaceutical applications, currently lack effective synthetic strategies to combine them within a single molecular structure. Here we describe an efficient approach to diastereoselective pyridyl lactamization via a photoinduced [3+2] cycloaddition, based on the unique triplet-state reactivity of N-N pyridinium ylides in the presence of a photosensitizer. The corresponding triplet diradical intermediates allow the stepwise radical [3+2] cycloaddition with a broad range of activated and unactivated alkenes under mild conditions. This method exhibits excellent efficiency, diastereoselectivity and functional group tolerance, providing a useful synthon for ortho-pyridyl γ- and δ-lactam scaffolds with syn-configuration in a single step. Combined experimental and computational studies reveal that the energy transfer process leads to a triplet-state diradical of N-N pyridinium ylides, which promotes the stepwise cycloaddition.

13.
Org Lett ; 25(15): 2722-2727, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37042834

RESUMO

A one-pot umpolung method for the ring-opening pyridylation of unstrained cyclic amines was developed using N-amidopyridinium salts. This process involves the formation of electron donor-acceptor complexes between bromide and N-amidopyridinium salts, ultimately leading to the functionalization of pyridines. This protocol is compatible with a range of 5- or 6-membered cyclic amines and pyridines, thereby providing a powerful synthon for preparing C4-functionalized pyridines under visible-light conditions in the absence of an external photocatalyst.

14.
Org Lett ; 24(31): 5845-5850, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916774

RESUMO

We disclose herein a Cp*Co(III)(LX)-catalyzed dearomative Diels-Alder dimerization of 2,6-disubstituted phenyl azidoformates. Upon the postulated cobalt-nitrenoid insertion into the neighboring ortho-carbon, the key intermediate of ortho-quinamine was generated for the subsequent dimeric cycloaddition process. A series of experimental and computational studies suggested that the quinolinol ligand of the cobalt catalyst plays a crucial role in the alcoholic solvent incorporation into the o-quinamine moiety, thereby enabling the Diels-Alder dimerization to furnish the bridged tricyclic bisamidation products.

15.
J Am Chem Soc ; 144(22): 10064-10074, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621341

RESUMO

Intramolecular alkyne hydroamidation represents a straightforward approach for the access to synthetically valuable cyclic enamides. Despite some advances made in this realm, the ability to attain a precise regiocontrol still remains challenging, especially for endo cyclization that leads to six-membered and larger azacyclic rings. Herein, we report a NiH-catalyzed intramolecular hydroamidation of alkynyl dioxazolones that allows for an excellent endo selectivity, thus affording a range of six- to eight-membered endocyclic enamides with a broad scope. Mechanistic investigations revealed that Ni(I) catalysis is operative in the current system, proceeding via regioselective syn-hydronickelation, alkenylnickel E/Z isomerization, and Ni-centered inner-sphere nitrenoid transfer. In particular, the key alkenylnickel isomerization step, which previously lacked mechanistic understandings, was found to take place through the η2-vinyl transition state. The synthetic value of this protocol was demonstrated by diastereoselective modifications of the obtained endocyclic enamides to highly functionalized δ-lactam scaffolds.


Assuntos
Alcinos , Catálise , Ciclização , Isomerismo , Estereoisomerismo
16.
J Am Chem Soc ; 144(20): 9161-9171, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35549253

RESUMO

Herein, we report a photoinduced transition-metal-free C(aryl)-N bond formation between 2,4,6-tri(aryl)boroxines or arylboronic acids as an aryl source and 1,4,2-dioxazol-5-ones (dioxazolones) as an amide coupling partner. Chloride anion, either generated in situ by photodissociation of chlorinated solvent molecules or added separately as an additive, was found to play a critical cooperative role, thereby giving convenient access to a wide range of synthetically versatile N-arylamides under mild photo conditions. The synthetic virtue of this transition-metal-free Chan-Evans-Lam-type coupling was demonstrated by large-scale reactions, synthesis of 15N-labeled arylamides, and applicability toward biologically relevant compounds. On the basis of mechanistic investigations, two distinctive photoexcitations are proposed to function in the current process, in which the first excitation involving chloro-boron adduct facilitates the transition-metal-free activation of dioxazolones by single electron transfer (SET), and the second one enables the otherwise-inoperative 1,2-aryl migration of the thus-formed N-chloroamido-borate adduct.


Assuntos
Elementos de Transição , Ânions , Catálise , Transporte de Elétrons
17.
Angew Chem Int Ed Engl ; 61(25): e202202971, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35403797

RESUMO

Herein, we report a polar-radical relay strategy for α-C-H amination of cyclic amines with N-chloro-N-sodio-carbamates. The relay is initiated by in situ generation of cyclic iminium intermediate using N-iodosuccinimide (NIS) oxidant as an initiator, which then operates through a series of polar (addition and elimination) and radical (homolysis, hydrogen- and halogen atom transfer) reactions to enable the challenging C-N bond formation in a controlled manner. A broad range of α-amino cyclic amines were readily accessed with excellent regioselectivity, and the superb applicability was further demonstrated by functionalization of biologically relevant compounds.


Assuntos
Aminas , Hidrogênio , Aminação , Aminas/química , Catálise , Hidrogênio/química
18.
J Am Chem Soc ; 144(9): 4277-4285, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35200026

RESUMO

Catalytic carbon-nitrogen bond formation in hydrocarbons is an appealing synthetic tool to access valuable nitrogen-containing compounds. Although a number of synthetic approaches have been developed to construct a bifunctional α-amino carbonyl scaffold in this realm, installation of an amino functionality at the remote and unfunctionalized aliphatic sites remains underdeveloped. Here we present a tandem iridium catalysis that enables the redox-relay amidation of alkenyl alcohols via chain walking and metal-nitrenoid transfer, which eventually offers a new route to various α-amino ketones with excellent regioselectivity. The virtue of this transformation is that an unrefined isomeric mixture of alkenyl alcohols can be utilized as the readily available starting materials to lead to the regioconvergent amidation. Mechanistic investigations revealed that the reaction proceeds via a tandem process involving two key components of redox-relay chain walking and intermolecular nitrenoid transfer with the assistance of hydrogen bonding, thus representing the competence of Ir catalysis for the olefin migratory C-N coupling with high efficiency and exquisite selectivity.


Assuntos
Álcoois , Cetonas , Álcoois/química , Catálise , Irídio/química , Cetonas/química , Nitrogênio
19.
J Am Chem Soc ; 144(7): 2885-2892, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138104

RESUMO

Synthesis of heteroaryl amines has been an important topic in organic chemistry because of their importance in small-molecule discovery. In particular, 2-aminopyrimidines represent a highly privileged structural motif that is prevalent in bioactive molecules, but a general strategy to introduce the pyrimidine C2-N bonds via direct functionalization is elusive. Here we describe a synthetic platform for site-selective C-H functionalization that affords pyrimidinyl iminium salt intermediates, which then can be transformed into various amine products in situ. Mechanism-based reagent design allowed for the C2-selective amination of pyrimidines, opening the new scope of site-selective heteroaryl C-H functionalization. Our method is compatible with a broad range of pyrimidines with sensitive functional groups and can access complex aminopyrimidines with high selectivity.

20.
J Am Chem Soc ; 144(8): 3667-3675, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167292

RESUMO

ß2-Amino carbonyls, an α-substituted ß-amino scaffold, hold a prominent place in the development of new pharmaceuticals and peptidomimetics. Herein, we report a highly efficient Rh-catalyzed ring-opening amidation of substituted cyclopropanols, which turned out to serve as a linchpin for the selective synthesis of ß2-amino ketones to outcompete the formation of ß3-isomers. Instead of the generally accepted rationale to consider steric factors for the ß2-selectivity, orbital interaction was elucidated to play a more critical role in the amidative ring-opening of cyclopropanols to generate the key Rh-C intermediate. Subsequent inner-sphere acylnitrene transfer was achieved in excellent efficiency (TON > 5000) by using readily accessible dioxazolones as the amino source to afford ß2-amino ketones with broad applicability.


Assuntos
Cetonas , Ródio , Catálise , Éteres Cíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...