Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(25): 17170-17179, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865584

RESUMO

Selective activation of C-H bonds in light alkanes under mild conditions is challenging but holds the promise of efficient upgrading of abundant hydrocarbons. In this work, we report the conversion of propane to propylene with ∼95% selectivity on Cu(I)-ZSM-5 with O2 at room temperature and pressure. The intraporous Cu(I) species was oxidized to Cu(II) during the reaction but could be regenerated with H2 at 220 °C. Diffuse reflectance ultraviolet spectroscopy indicated the presence of both Cu+-O2 and Cu2(µ-O2)2+ species in the zeolite pores during the reaction, and electron paramagnetic resonance results showed that propane activation occurred via a radical-mediated pathway distinct from that with H2O2 as the oxidant. Correlation between spectroscopic and reactivity results on Cu(I)-ZSM-5 with different Cu loadings suggests that the isolated intraporous Cu(I) species is the main active species in propane activation.

2.
Chem Soc Rev ; 53(13): 7091-7157, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38845536

RESUMO

Energy storage devices with high power and energy density are in demand owing to the rapidly growing population, and lithium-ion batteries (LIBs) are promising rechargeable energy storage devices. However, there are many issues associated with the development of electrode materials with a high theoretical capacity, which need to be addressed before their commercialization. Extensive research has focused on the modification and structural design of electrode materials, which are usually expensive and sophisticated. Besides, polymer binders are pivotal components for maintaining the structural integrity and stability of electrodes in LIBs. Polyvinylidene difluoride (PVDF) is a commercial binder with superior electrochemical stability, but its poor adhesion, insufficient mechanical properties, and low electronic and ionic conductivity hinder its wide application as a high-capacity electrode material. In this review, we highlight the recent progress in developing different polymeric materials (based on natural polymers and synthetic non-conductive and electronically conductive polymers) as binders for the anodes and cathodes in LIBs. The influence of the mechanical, adhesion, and self-healing properties as well as electronic and ionic conductivity of polymers on the capacity, capacity retention, rate performance and cycling life of batteries is discussed. Firstly, we analyze the failure mechanisms of binders based on the operation principle of lithium-ion batteries, introducing two models of "interface failure" and "degradation failure". More importantly, we propose several binder parameters applicable to most lithium-ion batteries and systematically consider and summarize the relationships between the chemical structure and properties of the binder at the molecular level. Subsequently, we select silicon and sulfur active electrode materials as examples to discuss the design principles of the binder from a molecular structure point of view. Finally, we present our perspectives on the development directions of binders for next-generation high-energy-density lithium-ion batteries. We hope that this review will guide researchers in the further design of novel efficient binders for lithium-ion batteries at the molecular level, especially for high energy density electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...