Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Heliyon ; 10(11): e32154, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961904

RESUMO

Background: Acute Myeloid Leukemia (AML) exhibits a wide array of phenotypic manifestations, progression patterns, and heterogeneous responses to immunotherapies, suggesting involvement of complex immunobiological mechanisms. This investigation aimed to develop an integrated prognostic model for AML by incorporating cancer driver genes, along with clinical and phenotypic characteristics of the disease, and to assess its implications for immunotherapy responsiveness. Methods: Critical oncogenic driver genes linked to survival were identified by screening primary effector and corresponding gene pairs using data from The Cancer Genome Atlas (TCGA), through univariate Cox proportional hazard regression analysis. This was independently verified using dataset GSE37642. Primary effector genes were further refined using LASSO regression. Transcriptomic profiling was quantified using multivariate Cox regression, and the derived prognostic score was subsequently validated. Finally, a multivariate Cox regression model was developed, incorporating the transcriptomic score along with clinical parameters such as age, gender, and French-American-British (FAB) classification subtype. The 'Accurate Prediction Model of AML Overall Survival Score' (APMAO) was developed and subsequently validated. Investigations were conducted into functional pathway enrichment, alterations in the gene mutational landscape, and the extent of immune cell infiltration associated with varying APMAO scores. To further investigate the potential of APMAO scores as a predictive biomarker for responsiveness to cancer immunotherapy, we conducted a series of analyses. These included examining the expression profiles of genes related to immune checkpoints, the interferon-gamma signaling pathway, and m6A regulation. Additionally, we explored the relationship between these gene expression patterns and the Tumor Immune Dysfunction and Exclusion (TIDE) dysfunction scores. Results: Through the screening of 95 cancer genes associated with survival and 313 interacting gene pairs, seven genes (ACSL6, MAP3K1, CHIC2, HIP1, PTPN6, TFEB, and DAXX) were identified, leading to the derivation of a transcriptional score. Age and the transcriptional score were significant predictors in Cox regression analysis and were integral to the development of the final APMAO model, which exhibited an AUC greater than 0.75 and was successfully validated. Notable differences were observed in the distribution of the transcriptional score, age, cytogenetic risk categories, and French-American-British (FAB) classification between high and low APMAO groups. Samples with high APMAO scores demonstrated significantly higher mutation rates and pathway enrichments in NFKB, TNF, JAK-STAT, and NOTCH signaling. Additionally, variations in immune cell infiltration and immune checkpoint expression, activation of the interferon-γ pathway, and expression of m6A regulators were noted, including a negative correlation between CD160, m6A expression, and APMAO scores. Conclusion: The combined APMAO score integrating transcriptional and clinical parameters demonstrated robust prognostic performance in predicting AML survival outcomes. It was linked to unique phenotypic characteristics, distinctive immune and mutational profiles, and patterns of expression for markers related to immunotherapy sensitivity. These observations suggest the potential for facilitating precision immunotherapy and advocate for its exploration in upcoming clinical trials.

2.
Front Oncol ; 14: 1399502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863620

RESUMO

Objective: This study aimed to assess the clinical importance of various biomarkers, including NLR, CEA, CA199, CA125, CA153, and HE4, through dynamic testing to evaluate the effectiveness of neoadjuvant chemotherapy (NACT) for individuals facing advanced ovarian cancer. This provides valuable information for tailoring treatment plans to individual patients, thereby leading to a more personalized and effective management of individuals facing ovarian cancer. Methods: The levels of NLR, CA125, CA199, CEA, CA153, and HE4 were detected before chemotherapy and after 3 courses of chemotherapy. Patients were categorized into ineffective and effective groups according to the effectiveness of NACT. To evaluate the factors influencing NACT's effectiveness in individuals facing advanced ovarian cancer, receiver operating characteristic (ROC) curves, predictive modeling, and multifactorial regression analysis were employed. Results: In the effective group, the patients' age, maximum tumor diameter, and CEA and HE4 levels of the patients were significantly higher compared to those in the ineffective group (P <.05). Additionally, the difference in HE4 levels before and after treatment between the effective and ineffective groups was statistically significant (P<.05). Multifactorial analysis showed that age and maximum tumor diameter were independent risk factors impacting the effectiveness of NACT in individuals facing advanced ovarian cancer (P<.05). The ROC curve for predicting the effectiveness of NACT in individuals facing advanced ovarian cancer showed a sensitivity of 93.3% for NLR and a specificity of 92.3% for CA199. HE4 emerged as the most reliable predictor, demonstrating a specificity of 84.6% and a sensitivity of 75.3%. The area under the curve of the combined CA125 and HE4 assays for predicting the ineffectiveness of NACT in individuals facing advanced ovarian cancer was 0.825, showcasing a specificity of 74.2% and a sensitivity of 84.6%. Conclusion: The predictive capacity for the effectiveness of NACT in individuals facing advanced ovarian cancer is notably high when considering the sensitivity of NLR and the specificity of CA199. Additionally, the combination of CA125 and HE4 assays can obtain a better predictive effect, which can accurately select patients suitable for NACT, determine the appropriate timing of the interval debulking surgery (IDS) surgery, and achieve a satisfactory tumor reduction effect.

3.
Drug Des Devel Ther ; 18: 2043-2061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863767

RESUMO

Background: Despite its extensive utilization in Chinese hospitals for treating acute pancreatitis (AP) and related acute respiratory distress syndrome (ARDS), the active components and mechanisms underlying the action of Qingyi Granule (QYKL) remain elusive. Methods: This study consists of four parts. First, we used Mendelian randomization (MR) to investigate the causal relationship between AP, cytokine, and ARDS. Next, 321 patients were collected to evaluate the efficacy of QYKL combined with dexamethasone (DEX) in treating AP. In addition, we used UHPLC-QE-MS to determine the chemical constituents of QYKL extract and rat serum after the oral administration of QYKL. The weighted gene coexpression network analysis (WGCNA) method was used to find the main targets of AP-related ARDS using the GSE151572 dataset. At last, a AP model was established by retrograde injection of 5% sodium taurocholate. Results: MR showed that AP may have a causal relationship with ARDS by mediating cytokine storms. Retrospective study results showed early administration of QYKL was associated with a lower incidence of ARDS, mortality, admissions to the intensive care unit, and length of stay in AP patients compared to the Control group. Furthermore, we identified 23 QYKL prototype components absorbed into rat serum. WGCNA and differential expression analysis identified 1558 APALI-related genes. The prototype components exhibited strong binding activity with critical targets. QYKL has a significant protective effect on pancreatic and lung injury in AP rats, and the effect is more effective after combined treatment with DEX, which may be related to the regulation of the IL-6/STAT3 signaling pathway. Conclusion: By integrating MR, retrospective analysis, and systematic pharmacological methodologies, this study systematically elucidated the therapeutic efficacy of QYKL in treating AP-related ARDS, establishing a solid foundation for its medicinal use.


Assuntos
Medicamentos de Ervas Chinesas , Pancreatite , Síndrome do Desconforto Respiratório , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Animais , Ratos , Humanos , Estudos Retrospectivos , Masculino , Ratos Sprague-Dawley , Dexametasona/farmacologia , Dexametasona/administração & dosagem , Doença Aguda , Feminino , Pessoa de Meia-Idade
4.
Langmuir ; 40(20): 10776-10791, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728176

RESUMO

Fractured reservoirs are an important source of oil and gas energy. After depletion of production, the production capacity of this reservoir decreases rapidly. Effective profile control is needed to improve the sweep efficiency and reservoir heterogeneity. Foam can solve such problems, but its profile control mechanism is not fully understood. Based on this, this paper uses the level set method to study the microscale control mechanism of foam in fractured media. The results show that artificial fractures and high-permeability microfractures are tighter than natural fractures, the Jamin effect of foam is stronger, and the secondary foaming ability is better. Therefore, the plugging ability of foam to natural fractures is far less than that of foam to artificial fractures and high-permeability microfractures. The larger the fracture opening, the larger the foam volume and the smaller the flow rate. As the opening ratio increases gradually, the generated foam flows more to the natural fractures with a large opening, and the effect of foam blocking large fractures becomes worse. The diversion rate curves of different opening ratios show that the foam has a good profile control effect when the opening ratios are 4:1 and 2:1, and even the diversion rate overturns, while the profile control diversion effect is poor when the opening ratio is 10:1, so it cannot play an effective role in profile control. The foam shows the profile control process of preferentially plugging the high-permeability area and allowing more subsequent fluids to enter the low-permeability area. The research reveals the profile control mechanism of foam on fractured reservoirs from the micro level, which is the supplement and verification of relevant macro research and provides a theoretical basis for the efficient development of fractured reservoirs.

5.
J Inflamm Res ; 17: 2513-2530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699595

RESUMO

Purpose: Explore the therapeutic effects and regulatory mechanism of Qingyi Decoction (QYD) on severe acute pancreatitis (SAP) associated acute lung injury (ALI). Methods: We identified the constituents absorbed into the blood of QYD based on a network pharmacological strategy. The differentially expressed genes from the GEO database were screened to identify the critical targets of QYD treatment of SAP-ALI. The SAP-ALI rat model was constructed.Some methods were used to evaluate the efficacy and mechanism of QYD in treating SAP-ALI. LPS-stimulated pulmonary microvascular endothelial cell injury simulated the SAP-induced pulmonary endothelial injury model. We further observed the therapeutic effect of QYD and CDK5 plasmid transfection on endothelial cell injury. Results: 18 constituents were absorbed into the blood, and 764 targets were identified from QYD, 25 of which were considered core targets for treating SAP-ALI. CDK5 was identified as the most critical gene. The results of differential expression analysis showed that the mRNA expression level of CDK5 in the blood of SAP patients was significantly up-regulated compared with that of healthy people. Animal experiments have demonstrated that QYD can alleviate pancreatic and lung injury inflammatory response and reduce the upregulation of CDK5 in lung tissue. QYD or CDK5 inhibitors could decrease the expression of NFAT5 and GEF-H1, and increase the expression of ACE-tub in SAP rat lung tissue. Cell experiments proved that QYD could inhibit the expression of TNF-α and IL-6 induced by LPS. Immunofluorescence results suggested that QYD could alleviate the cytoskeleton damage of endothelial cells, and the mechanism might be related to the inhibition of CDK5-mediated activation of NFAT5, GEF-H1, and ACE-tub. Conclusion: CDK5 has been identified as a critical target for pulmonary endothelial injury of SAP-ALI. QYD may partially alleviate microtubule disassembly by targeting the CDK5/NFAT5/GEF-H1 signaling pathway, thus relieving SAP-induced pulmonary microvascular endothelial cell injury.

7.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804490

RESUMO

Understanding the dynamics of excited-state vibrational energy relaxation in photosynthetic pigments is crucial for elucidating the mechanisms underlying energy transfer processes in light-harvesting complexes. Utilizing advanced femtosecond broadband transient fluorescence (TF) spectroscopy, we explored the excited-state vibrational dynamics of Chlorophyll-a (Chl-a) both in solution and within the light-harvesting complex II (LHCII). We discovered a vibrational cooling (VC) process occurring over ∼6 ps in Chl-a in ethanol solution following Soret band excitation, marked by a notable ultrafast TF blueshift and spectral narrowing. This VC process, crucial for regulating the vibronic lifetimes, was further elucidated through the direct observation of the population dynamics of higher vibrational states within the Qy electronic state. Notably, Chl-a within LHCII demonstrated significantly faster VC dynamics, unfolding within a few hundred femtoseconds and aligning with the ultrafast energy transfer processes observed within the complex. Our findings shed light on the complex interaction between electronic and vibrational states in photosynthetic pigments, underscoring the pivotal role of vibrational dynamics in enabling efficient energy transfer within light-harvesting complexes.

8.
Materials (Basel) ; 17(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38793518

RESUMO

In recent years, asphalt pavement has been subjected to varied environmental conditions during its service life, conditions that predispose it to deformation and cracking. To enhance the performance of asphalt pavement, rock asphalt has been selected as a modifier due to its good compatibility with virgin asphalt binder and its ability to improve the fatigue cracking resistance of asphalt mixtures. Although scholars have conducted some studies on rock asphalt mixtures, research on the fatigue and self-healing performance of these mixtures under conditions such as ultraviolet (UV) aging and freeze-thaw remains limited. This paper presents findings from a study that employs a combined fatigue-healing test to assess the impact of such complex environmental factors on the fatigue and self-healing properties of fine aggregate matrix (FAM) mixtures containing three types of rock asphalts, i.e., Buton, Qingchuan (QC), and Uintaite Modifier (UM). The analysis of fatigue-healing test results, grounded in viscoelastic continuum damage (VECD) theory, indicates that rock asphalt can extend the fatigue life of FAM mixtures, albeit with a concomitant decrease in their self-healing capabilities. The study further reveals that UV aging, freeze-thaw, and UV aging-freeze-thaw conditions all led to a diminution in the fatigue and self-healing properties of FAM mixtures. However, FAM mixtures containing rock asphalt demonstrated greater resilience against these reductions. Atomic force microscope (AFM) results indicate that UV aging reduced the number of bee-structures and enlarged their area, whereas the incorporation of rock asphalt enhanced the uniformity of these structures' distribution, thereby improving the fatigue cracking resistance of FAM mixtures. Fourier transform infrared spectroscopy (FTIR) analysis reveals that while UV aging increased the carbonyl and sulfoxide indices within the asphalt binder, rock asphalt is effective in mitigating this effect to a certain degree, thereby enhancing the aging resistance of FAM mixtures.

9.
iScience ; 27(5): 109617, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660401

RESUMO

Long-term manned spaceflight and extraterrestrial planet settlement become the focus of space powers. However, the potential influence of closed and socially isolating spaceflight on the brain function remains unclear. A 180-day controlled ecological life support system integrated experiment was conducted, establishing a spaceflight analog environment to explore the effect of long-term socially isolating living. Three crewmembers were enrolled and underwent resting-state fMRI scanning before and after the experiment. We performed both seed-based and network-based analyses to investigate the functional connectivity (FC) changes of the default mode network (DMN), considering its key role in multiple higher-order cognitive functions. Compared with normal controls, the leader of crewmembers exhibited significantly reduced within-DMN and between-DMN FC after the experiment, while two others exhibited opposite trends. Moreover, individual differences of FC changes were further supported by evidence from behavioral analyses. The findings may shed new light on the development of psychological protection for space exploration.

10.
J Inflamm Res ; 17: 2173-2193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617383

RESUMO

The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.

11.
Discov Oncol ; 15(1): 121, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619693

RESUMO

BACKGROUND AND OBJECTIVE: Acute myeloid leukemia (AML) is an aggressive, heterogenous hematopoetic malignancies with poor long-term prognosis. T-cell mediated tumor killing plays a key role in tumor immunity. Here, we explored the prognostic performance and functional significance of a T-cell mediated tumor killing sensitivity gene (GSTTK)-based prognostic score (TTKPI). METHODS: Publicly available transcriptomic data for AML were obtained from TCGA and NCBI-GEO. GSTTK were identified from the TISIDB database. Signature GSTTK for AML were identified by differential expression analysis, COX proportional hazards and LASSO regression analysis and a comprehensive TTKPI score was constructed. Prognostic performance of the TTKPI was examined using Kaplan-Meier survival analysis, Receiver operating curves, and nomogram analysis. Association of TTKPI with clinical phenotypes, tumor immune cell infiltration patterns, checkpoint expression patterns were analysed. Drug docking was used to identify important candidate drugs based on the TTKPI-component genes. RESULTS: From 401 differentially expressed GSTTK in AML, 24 genes were identified as signature genes and used to construct the TTKPI score. High-TTKPI risk score predicted worse survival and good prognostic accuracy with AUC values ranging from 75 to 96%. Higher TTKPI scores were associated with older age and cancer stage, which showed improved prognostic performance when combined with TTKPI. High TTKPI was associated with lower naïve CD4 T cell and follicular helper T cell infiltrates and higher M2 macrophages/monocyte infiltration. Distinct patterns of immune checkpoint expression corresponded with TTKPI score groups. Three agents; DB11791 (Capmatinib), DB12886 (GSK-1521498) and DB14773 (Lifirafenib) were identified as candidates for AML. CONCLUSION: A T-cell mediated killing sensitivity gene-based prognostic score TTKPI showed good accuracy in predicting survival in AML. TTKPI corresponded to functional and immunological features of the tumor microenvironment including checkpoint expression patterns and should be investigated for precision medicine approaches.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38639618

RESUMO

Objective: This study aims to investigate the clinical efficacy of biomimetic physiotherapy combined with manipulation therapy in the management of female myofascial pelvic pain syndrome (MPPS). Methods: A total of 120 patients diagnosed with MPPS at our hospital from June 2018 to June 2021 were included. All patients had a history of sexual activity, met the diagnostic criteria for female chronic pelvic pain, and exhibited pelvic floor muscle and myofascial trigger points in gynecological examinations. Based on treatment methods, patients were categorized into a control group (n=64, treated with biomimetic physiotherapy) and an experimental group (n=56, treated with biomimetic physiotherapy plus manipulation therapy). Pre- and post-treatment assessments in both groups included pelvic floor muscle surface electromyogram, Visual Analogue Scale (VAS) score, pelvic floor muscle tenderness score, and pelvic floor muscle strength. Results: After treatment, the mean values of pre-resting potential and post-resting potential declined significantly, from (9.58±2.22) to (4.06±0.77) and from (8.18±1.78) to (3.56±0.61), respectively. In the control group, these values decreased from (9.61±2.77) to (3.15±0.58), and in the experimental group, they decreased from (8.16±1.78) to (2.79±0.59). The VAS score exhibited a noteworthy decrease from (6.18±1.00) to (3.15±0.56) in the control group and from (6.20±1.13) to (2.04±0.68) in the experimental group. The pelvic floor muscle tenderness score decreased from (8.14±0.86) to (3.78±0.77) in the control group and from (7.91±1.03) to (1.93±0.80) in the experimental group. Furthermore, the percentage of patients whose pelvic floor muscle strength increased from

13.
Org Lett ; 26(18): 3935-3939, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668726

RESUMO

Herein, we report a general I2-catalyzed and TBHP/ammonium-promoted conversion of arylethanone to aromatic nitriles under air. This procedure proceeded with the ß-scission of iminyl radical, which was facilitated via quenching the released alkyl radical by tert-butyl peroxyl radical leading to peroxide followed with Kornblum-DeLaMare rearrangement. A series of aryl methyl ketone and alkyl aryl ketone worked well with good functional group tolerance in high yields. As such, this metal-free procedure represents a facile, safe, green, and practical procedure in conversion of arylethanone to aromatic nitriles.

14.
Medicine (Baltimore) ; 103(17): e37713, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669360

RESUMO

Previous research has suggested that the monocyte-to-high-density lipoprotein ratio (MHR), an emerging inflammatory biomarker, holds promise in predicting the prevalence of various cardiovascular and metabolic diseases. However, earlier investigations were constrained by the relatively modest sample sizes. This study endeavored to expand the sample size and conduct a more comprehensive exploration of the potential relationship between MHR and hyperuricemia. This cross-sectional study incorporated data from participants of the 2009 to 2018 National Health and Nutrition Examination Survey (NHANES) with complete and qualifying information. MHR was determined by calculating the ratio between monocyte count and high-density lipoprotein levels. Various statistical methodologies such as weighted multivariate logistic regression, subgroup analysis, smoothed curve fitting, and threshold analysis, have been used to explore the correlation between hyperuricemia and MHR. The study included a cohort of 17,694 participants, of whom 3512 were diagnosed with hyperuricemia. MHR levels were notably higher in the hyperuricemia group than in the normal group, aligning with an elevated body mass index (BMI). A comprehensive multivariate logistic analysis, accounting for all relevant adjustments, revealed a notable positive correlation between MHR and hyperuricemia (P < .001, OR = 1.98, 95% CI: 1.54-2.54). Subgroup analysis indicated that the MHR exhibited an enhanced predictive capacity for identifying hyperuricemia risk, particularly in females (P < .05). Curvilinear and threshold analyses revealed a nonlinear association between MHR and hyperuricemia prevalence, with a notable inflection point at 0.826. In the US population, a clear positive correlation was observed between the MHR and prevalence of hyperuricemia. Importantly, the MHR is a more robust predictor of hyperuricemia risk in females. Further investigations are required to confirm these findings.


Assuntos
Hiperuricemia , Lipoproteínas HDL , Monócitos , Inquéritos Nutricionais , Humanos , Hiperuricemia/epidemiologia , Hiperuricemia/sangue , Feminino , Monócitos/metabolismo , Masculino , Estudos Transversais , Pessoa de Meia-Idade , Lipoproteínas HDL/sangue , Adulto , Biomarcadores/sangue , Índice de Massa Corporal , Fatores de Risco , Estados Unidos/epidemiologia , Idoso
15.
Nat Commun ; 15(1): 3171, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609379

RESUMO

The lifetime of electronic coherences found in photosynthetic antennas is known to be too short to match the energy transfer time, rendering the coherent energy transfer mechanism inactive. Exciton-vibrational coherence time in excitonic dimers which consist of two chromophores coupled by excitation transfer interaction, can however be much longer. Uncovering the mechanism for sustained coherences in a noisy biological environment is challenging, requiring the use of simpler model systems as proxies. Here, via two-dimensional electronic spectroscopy experiments, we present compelling evidence for longer exciton-vibrational coherence time in the allophycocyanin trimer, containing excitonic dimers, compared to isolated pigments. This is attributed to the quantum phase synchronization of the resonant vibrational collective modes of the dimer, where the anti-symmetric modes, coupled to excitonic states with fast dephasing, are dissipated. The decoupled symmetric counterparts are subject to slower energy dissipation. The resonant modes have a predicted nearly 50% reduction in the vibrational amplitudes, and almost zero amplitude in the corresponding dynamical Stokes shift spectrum compared to the isolated pigments. Our findings provide insights into the mechanisms for protecting coherences against the noisy environment.

16.
Transl Cancer Res ; 13(2): 1083-1090, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482453

RESUMO

Background: Endometrial cancer (EC) is an epithelial malignancy occurring in the endometrium, with a 5-year mortality rate of above 10%. However, there is currently a lack of studies exploring the potential of a predictive model of tumor-specific death after surgery in these patients. Methods: From January 2015 to December 2017, data related to 482 patients with EC admitted to the Dushu Lake Hospital Affiliated to Soochow University were analyzed. Patients were divided into death (n=62) and survival (n=420) groups according to whether tumor-specific death occurred at 5 years postoperatively or not. The clinical characteristics of the two groups were compared, and the risk factors for tumor-specific death in patients with EC 5 years after surgery were investigated by logistics regression analysis. A nomogram prediction model was established according to the relevant risk factors. Results: Tumor size, Ki-67 positive rate, Federation International of Gynecology and Obstetrics (FIGO) stage, and the rate of vascular tumor thrombus between the two groups (P<0.05) were found to be the statistically significant factors. Positive Ki-67, tumor size >3.35 cm, stage III, and vascular tumor thrombus were factors that influenced the tumor-specific death at 5 years after surgery (P<0.05). The predictive model obtained an area under the receiver operating characteristic (ROC) curves in the training and verification sets of 0.847 [95% confidence interval (CI): 0.779-0.916] and 0.886 (95% CI: 0.803-0.969), respectively. Conclusions: The nomogram prediction model, which was established in this study, was proved to be valuable in predicting tumor-specific death 5 years after the surgery in patients with EC.

17.
Lab Med ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470244

RESUMO

BACKGROUND: Pancreatic cancer (PC) is usually detected in the advanced stages. Liquid biopsy has become a revolutionary strategy for cancer diagnosis and prognosis prediction. This study aims to investigate the diagnostic and prognostic value of circulating exosomal glypican-1 (GPC-1) in PC. METHODS: We systematically searched relevant studies. For diagnostic accuracy, pooled sensitivity and specificity and the area under the summary receiver operating characteristic curve (AUC) were calculated. Regarding prognostic value, hazard ratios (HRs) and 95% CIs for overall survival (OS) were summarized by using a random-effects model. RESULTS: We found 8 studies that examined the diagnostic value of circulating exosomal GPC-1 in PC, and 3 studies that investigated its prognostic value. Pooled sensitivity and specificity were 0.88 (95% CI, 0.65-0.97) and 0.86 (95% CI, 0.72-0.94). The AUC was 0.93 (95% CI, 0.90-0.95). Prognostic analysis showed that higher levels of circulating exosomal GPC-1 were associated with poorer OS in PC patients, and the combined HR for OS was 4.59 (random-effects model, 95% CI = 1.17-18.03, P = .022). The results of both studies were robust and neither had publication bias. CONCLUSION: Circulating exosomal GPC-1 may be used as a diagnostic and prognostic biomarker for PC. However, this result needs to be validated by further research using a larger sample size.

18.
J Am Chem Soc ; 146(14): 9709-9720, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546406

RESUMO

Chemically modifying monolayer two-dimensional transition metal dichalcogenides (TMDs) with organic molecules provides a wide range of possibilities to regulate the electronic and optoelectronic performance of both materials and devices. However, it remains challenging to chemically attach organic molecules to monolayer TMDs without damaging their crystal structures. Herein, we show that the Mo atoms of monolayer MoS2 (1L-MoS2) in defect states can coordinate with both catechol and 1,10-phenanthroline (Phen) groups, affording a facile route to chemically modifying 1L-MoS2. Through the design of two isomeric molecules (LA2 and LA5) comprising catechol and Phen groups, we show that attaching organic molecules to Mo atoms via coordinative bonds has no negative effect on the crystal structure of 1L-MoS2. Both theoretical calculation and experiment results indicate that the coordinative strategy is beneficial for (i) repairing sulfur vacancies and passivating defects; (ii) achieving a long-term and stable n-doping effect; and (iii) facilitating the electron transfer. Field effect transistors (FETs) based on the coordinatively modified 1L-MoS2 show high electron mobilities up to 120.3 cm2 V-1 s-1 with impressive current on/off ratios over 109. Our results indicate that coordinatively attaching catechol- or Phen-bearing molecules may be a general method for the nondestructive modification of TMDs.

19.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517256

RESUMO

Parametric superfluorescence (PSF), which originated from the optical amplification of vacuum quantum noise, is the primary noise source of femtosecond fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS). It severely affects the detection limit of FNOPAS to collect the femtosecond time-resolved spectra of extremely weak fluorescence. Here, we report the development of femtosecond fluorescence conical optical parametric amplification spectroscopy (FCOPAS), aimed at effectively suppressing the noise fluctuation from the PSF background. In contrast to traditional FNOPAS configurations utilizing lateral fluorescence collection and dot-like parametric amplification, FCOPAS employs an innovative conical fluorescence collection and ring-like amplification setup. This design enables effective cancellation of noise fluctuation across the entire PSF ring, resulting in an approximate order of magnitude reduction in PSF noise compared to prior FNOPAS outcomes. This advancement enables the resolution of transient fluorescence spectra of 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) dye molecules in ethanol, even at an optically dilute concentration of 10-6 mol/l, with significantly enhanced signal-to-noise ratios. This improvement will be significant for extremely weak fluorescence detection on the femtosecond time scale.

20.
Clinics (Sao Paulo) ; 79: 100337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38368841

RESUMO

OBJECTIVES: To investigate the impact of Three-Dimensional (3D) laparoscopy compared to traditional laparotomy on serum tumor markers and coagulation function in patients diagnosed with early-stage Endometrial Cancer (EC). METHOD: The authors retrospectively analyzed the clinical data of 75 patients diagnosed with early-stage EC and categorized them into two groups based on the surgical techniques employed. The 3D group consisted of 36 patients who underwent 3D laparoscopic surgery, while the Laparotomy group comprised 39 patients who underwent traditional laparotomy. The authors then compared the alterations in serum tumor markers and coagulation function between the two groups. RESULTS: Postoperatively, serum levels of CA125, CA199, and HE4 were notably reduced in both groups on the third day, with the levels being more diminished in the 3D group than in the Laparotomy Group (p < 0.05). Conversely, FIB levels escalated significantly in both groups on the third-day post-surgery, with a more pronounced increase in the 3D group. Additionally, PT and APTT durations were reduced and were more so in the 3D group than in the laparotomy group (p < 0.05). CONCLUSIONS: When juxtaposed with traditional laparotomy, 3D laparoscopic surgery for early-stage EC appears to be more efficacious, characterized by reduced complications, and expedited recovery. It can effectively mitigate serum tumor marker levels, attenuate the inflammatory response and damage to immune function, foster urinary function recovery, and enhance the quality of life. However, it exerts a more significant influence on the patient's coagulation parameters, necessitating meticulous prevention and treatment strategies for thromboembolic events in clinical settings.


Assuntos
Neoplasias do Endométrio , Laparoscopia , Feminino , Humanos , Neoplasias do Endométrio/cirurgia , Estudos Retrospectivos , Estadiamento de Neoplasias , Biomarcadores Tumorais , Laparotomia/métodos , Qualidade de Vida , Complicações Pós-Operatórias/cirurgia , Laparoscopia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...