Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Clin Pharmacol Ther ; 62(2): 96-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997944

RESUMO

Clinical pharmacists participated in the drug therapy of peritonitis caused by Methylobacterium infection in a patient with renal insufficiency. Based on the knowledge of clinical pharmacy, the patient's condition and laboratory parameters, the literature, and the pharmacokinetic/pharmacodynamic characteristics of antibiotics, amikacin in combination with ciprofloxacin was suggested for anti-infection therapy. During the treatment, clinical pharmacists timely evaluated the efficacy of antibiotics, monitored the adverse reactions, and provided individualized pharmaceutical care in the patient.


Assuntos
Infecções , Peritonite , Serviço de Farmácia Hospitalar , Insuficiência Renal , Humanos , Antibacterianos/uso terapêutico , Amicacina/uso terapêutico , Infecções/complicações , Infecções/tratamento farmacológico , Insuficiência Renal/complicações , Peritonite/diagnóstico , Peritonite/tratamento farmacológico , Peritonite/etiologia , Farmacêuticos
2.
ACS Appl Mater Interfaces ; 15(33): 39606-39613, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37579213

RESUMO

Highly selective CO2 capture from flue gas based on adsorption technology is among the largest challenge on the horizon, due to its high temperature (>333 K), lower partial pressure (0.1-0.2 bar), and competition from water. Due to the designable and tunable pore system, porous coordination polymers (PCPs) have been considered as the most exciting discoveries in porous materials. However, the rational design and function-led preparation of the pore system that permits highly selective CO2 capture from flue gas (CO2/N2/O2/CO/H2O) remains a great challenge. Herein, we report a highly selective CO2 capture from wet-hot (363 K, RH = 40%) flue gas by a robust trap-and-flow crystal (NTU-67). Crystallographic analysis showed that the flow channel provides plausible CO2 traffic, while the confined trap works as an accommodation for captured gas molecules. Further, the hydrophobic pore surface endows the function of the channels that are not influenced by hot moisture, a major obstacle to overcome direct CO2 capture by PCPs. The integral nature of NTU-67, including good stability in SO2, meets the key prerequisites that are usually considered for practical applications. The molecular insight and highly efficient CO2 capture make us believe that different nanospace with their own duties may be extended into ingenious design of more advanced adsorbents for cost-effective and promising for CO2 capture from flue gas.

3.
ACS Sustain Chem Eng ; 10(15): 4862-4871, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574430

RESUMO

Photoreforming of cellulose is a promising route for sustainable H2 production. Herein, ball-milling (BM, with varied treatment times of 0.5-24 h) was employed to pretreat microcrystalline cellulose (MCC) to improve its activity in photoreforming over a Pt/TiO2 catalyst. It was found that BM treatment reduced the particle size, crystallinity index (CrI), and degree of polymerization (DP) of MCC significantly, as well as produced amorphous celluloses (with >2 h treatment time). Amorphous cellulose water-induced recrystallization to cellulose II (as evidenced by X-ray diffraction (XRD) and solid-state NMR analysis) was observed in aqueous media. Findings of the work showed that the BM treatment was a simple and effective pretreatment strategy to improve photoreforming of MCC for H2 production, mainly due to the decreased particle size and, specifically in aqueous media, the formation of the cellulose II phase from the recrystallization of amorphous cellulose, the extent of which correlates well with the activity in photoreforming.

4.
ACS Appl Mater Interfaces ; 13(46): 54783-54793, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34763423

RESUMO

Photosensitizers play a critical role in photodynamic therapy (PDT). Multifunctional organic nanoparticles (NPs) that possess bright fluorescence in aggregates, high singlet oxygen (1O2) quantum yield, near-infrared (NIR) absorption and emission, large Stokes shift, two-photon bioimaging, specific organelle targeting, high PDT efficiency, as well as good biocompatibility and photostability are ideal candidate photosensitizers for image-guided PDT. Due to its enhanced fluorescence and high 1O2 generation efficiency in aggregate states, photosensitizers with aggregation-induced emission (AIE) characteristics have attracted increasing interest in PDT. In this study, a new AIE-active Schiff base 5-(((5-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)methylene)amino)-3-methylthiophene-2,4-dicarbonitrile (TBTDC) based on a D-A-π-A skeleton has been designed and synthesized, and it can be readily encapsulated by Pluronic F-127 to form uniform nanoparticles. TBTDC NPs exhibit bright NIR emission at 825 nm with a Stokes shift up to 300 nm, impressive two-photon bioimaging capability with tissue penetration deep into 300 µm, high 1O2 generation quantum yield (0.552), specific targeting to lysosome, as well as good biocompatibility and photostability. Furthermore, TBTDC NPs present remarkable cytotoxicity for tumor cells and suppression of tumor growth in nude mice through reactive oxygen species generation upon white light irradiation. These results reveal that TBTDC NPs have great potential to become excellent candidates for multifunctional organic photosensitizers for two-photon bioimaging and image-guided PDT and are promising in future clinical applications.


Assuntos
Antineoplásicos/farmacologia , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Nanopartículas/química , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Poloxâmero/química , Poloxâmero/farmacologia , Bases de Schiff/síntese química , Bases de Schiff/química , Bases de Schiff/farmacologia
5.
Angew Chem Int Ed Engl ; 59(44): 19478-19486, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32159268

RESUMO

ZSM-5 zeolite nanoboxes with accessible meso-micro-pore architecture and strong acid sites are important in relevant heterogeneous catalysis suffering from mass transfer limitations and weak acidities. Rational design of parent zeolites with concentrated and non-protective coordination of Al species can facilitate post-synthetic treatment to produce mesoporous ZSM-5 nanoboxes. In this work, a simple and effective method was developed to convert parent MFI zeolites with tetrahedral extra-framework Al into Al-enriched mesoporous ZSM-5 nanoboxes with low silicon-to-aluminium ratios of ≈16. The parent MFI zeolite was prepared by rapid ageing of the zeolite sol gel synthesis mixture. The accessibility to the meso-micro-porous intra-crystalline network was probed systematically by comparative pulsed field gradient nuclear magnetic resonance diffusion measurements, which, together with the strong acidity of nanoboxes, provided superb catalytic activity and longevity in hydrocarbon cracking for propylene production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...