Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
1.
J Refract Surg ; 40(8): e508-e519, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39120023

RESUMO

PURPOSE: To assess the long-term (1-year) effect of myopic femtosecond laser-assisted in situ keratomileusis (FSLASIK) on clinical characteristics and tear film biomarkers. METHODS: Eighty eyes from 80 patients who underwent FSLASIK were evaluated. Ocular surface symptoms and signs were evaluated using specific questionnaires and tests. The corneal nerves and dendritic cells were examined using in vivo confocal microscopy. Corneal sensitivity was evaluated using a Cochet-Bonnet esthesiometer. Tear inflammatory cytokines and neuropeptides were evaluated using Luminex immunoassay. These examinations were performed preoperatively and at 1, 3, 6, and 12 months postoperatively. RESULTS: Seventy-three participants completed all follow-up visits. Following FS-LASIK, ocular symptoms and signs (except Schirmer I test) worsened at 1 month but corneal and conjunctival stainings improved by 3 months. The numbers of dendritic cells and activated dendritic cells increased at the 3-month postoperative visit and recovered to preoperative levels by the 6-month visit. Ocular symptoms and corneal sensitivity recovered to preoperative levels at the 12-month visit. Tear break-up time and corneal nerve morphology were not recovered to preoperative status at the 12-month visit. Interleukin (IL)-1ß, IL-17A, tumor necrosis factor-α, and substance P tear levels significantly increased at all postoperative visits compared to preoperative levels. Corneal staining scores positively correlated with tear IL-1ß and IL-17A levels, whereas corneal nerve morphology positively correlated with corneal sensitivity and negatively correlated with substance P levels. CONCLUSIONS: Although most clinical variables improved at 12 months postoperatively, some tear inflammatory cytokines and substance P remain altered beyond 12 months, indicating that ocular homeostasis is not completely recovered. [J Refract Surg. 2024;40(8):e508-e519.].


Assuntos
Biomarcadores , Córnea , Ceratomileuse Assistida por Excimer Laser In Situ , Lasers de Excimer , Miopia , Lágrimas , Humanos , Lágrimas/metabolismo , Ceratomileuse Assistida por Excimer Laser In Situ/métodos , Estudos Prospectivos , Masculino , Adulto , Feminino , Miopia/cirurgia , Miopia/fisiopatologia , Miopia/metabolismo , Seguimentos , Biomarcadores/metabolismo , Córnea/inervação , Córnea/metabolismo , Lasers de Excimer/uso terapêutico , Microscopia Confocal , Adulto Jovem , Citocinas/metabolismo , Acuidade Visual/fisiologia , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/fisiopatologia , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/etiologia , Inquéritos e Questionários , Pessoa de Meia-Idade , Proteínas do Olho/metabolismo , Células Dendríticas/metabolismo
2.
Chem Sci ; 15(30): 12026-12035, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092107

RESUMO

Alkyne annulation has been widely used in organic synthesis for the construction of azacycles with unique structural and physicochemical properties. However, the analogous transformation of fluoroalkynes remains a challenge and has seen limited progress. Herein we report a 1,2,3,4-tetrafunctionalization of polyfluoroalkynes for the divergent construction of 5-7-membered (E)-1,2-difluorovinyl azacycles. The use of the fluorine atom as a detachable "activator" not only obviates the use of any transition metal catalysts and oxidizing reagents, but also ensures the [3-5 + 2]-annulation and defluorinative functionalization of fluoroalkynes with high chemo-, regio-, and stereoselectivities. This method exhibits a broad substrate scope, good functional group tolerance, and excellent scalability, providing a modular platform for accessing fluorinated skeletons of medicinal and biological interest. The late-stage modification of complex molecules, the multi-component 1,2-diamination of fluoroalkyne, and the synthesis of valuable organofluorides from the obtained products further highlight the real-world utility of this fluoroalkyne annulation technology.

3.
mSystems ; : e0017624, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105582

RESUMO

Nitrogen (N)-fixing organisms, also known as diazotrophs, play a crucial role in N-limited ecosystems by controlling the production of bioavailable N. The carbon-dominated cold-seep ecosystems are inherently N-limited, making them hotspots of N fixation. However, the knowledge of diazotrophs in cold-seep ecosystems is limited compared to other marine ecosystems. In this study, we used multi-omics to investigate the diversity and catabolism of diazotrophs in deep-sea cold-seep bottom waters. Our findings showed that the relative abundance of diazotrophs in the bacterial community reached its highest level in the cold-seep bottom waters compared to the cold-seep upper waters and non-seep bottom waters. Remarkably, more than 98% of metatranscriptomic reads aligned on diazotrophs in cold-seep bottom waters belonged to the genus Sagittula, an alphaproteobacterium. Its metagenome-assembled genome, named Seep-BW-D1, contained catalytic genes (nifHDK) for nitrogen fixation, and the nifH gene was actively transcribed in situ. Seep-BW-D1 also exhibited chemosynthetic capability to oxidize C1 compounds (methanol, formaldehyde, and formate) and thiosulfate (S2O32-). In addition, we observed abundant transcripts mapped to genes involved in the transport systems for acetate, spermidine/putrescine, and pectin oligomers, suggesting that Seep-BW-D1 can utilize organics from the intermediates synthesized by methane-oxidizing microorganisms, decaying tissues from cold-seep benthic animals, and refractory pectin derived from upper photosynthetic ecosystems. Overall, our study corroborates that carbon-dominated cold-seep bottom waters select for diazotrophs and reveals the catabolism of a novel chemosynthetic alphaproteobacterial diazotroph in cold-seep bottom waters. IMPORTANCE: Bioavailable nitrogen (N) is a crucial element for cellular growth and division, and its production is controlled by diazotrophs. Marine diazotrophs contribute to nearly half of the global fixed N and perform N fixation in various marine ecosystems. While previous studies mainly focused on diazotrophs in the sunlit ocean and oxygen minimum zones, recent research has recognized cold-seep ecosystems as overlooked N-fixing hotspots because the seeping fluids in cold-seep ecosystems introduce abundant bioavailable carbon but little bioavailable N, making most cold seeps inherently N-limited. With thousands of cold-seep ecosystems detected at continental margins worldwide in the past decades, the significant role of cold seeps in marine N biogeochemical cycling is emphasized. However, the diazotrophs in cold-seep bottom waters remain poorly understood. Through multi-omics, this study identified a novel alphaproteobacterial chemoheterotroph belonging to Sagittula as one of the most active diazotrophs residing in cold-seep bottom waters and revealed its catabolism.

4.
Bioelectromagnetics ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39099158

RESUMO

With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.

5.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125601

RESUMO

In late 2019, the emergence of a novel coronavirus led to its identification as SARS-CoV-2, precipitating the onset of the COVID-19 pandemic. Many experimental and computational studies were performed on SARS-CoV-2 to understand its behavior and patterns. In this research, Molecular Dynamic (MD) simulation is utilized to compare the behaviors of SARS-CoV-2 and its Variants of Concern (VOC)-Alpha, Beta, Gamma, Delta, and Omicron-with the hACE2 protein. Protein structures from the Protein Data Bank (PDB) were aligned and trimmed for consistency using Chimera, focusing on the receptor-binding domain (RBD) responsible for ACE2 interaction. MD simulations were performed using Visual Molecular Dynamics (VMD) and Nanoscale Molecular Dynamics (NAMD2), and salt bridges and hydrogen bond data were extracted from the results of these simulations. The data extracted from the last 5 ns of the 10 ns simulations were visualized, providing insights into the comparative stability of each variant's interaction with ACE2. Moreover, electrostatics and hydrophobic protein surfaces were calculated, visualized, and analyzed. Our comprehensive computational results are helpful for drug discovery and future vaccine designs as they provide information regarding the vital amino acids in protein-protein interactions (PPIs). Our analysis reveals that the Original and Omicron variants are the two most structurally similar proteins. The Gamma variant forms the strongest interaction with hACE2 through hydrogen bonds, while Alpha and Delta form the most stable salt bridges; the Omicron is dominated by positive potential in the binding site, which makes it easy to attract the hACE2 receptor; meanwhile, the Original, Beta, Delta, and Omicron variants show varying levels of interaction stability through both hydrogen bonds and salt bridges, indicating that targeted therapeutic agents can disrupt these critical interactions to prevent SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Humanos , COVID-19/virologia , COVID-19/metabolismo , Ligação de Hidrogênio , Sítios de Ligação
6.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125995

RESUMO

Protein structure prediction is important for understanding their function and behavior. This review study presents a comprehensive review of the computational models used in predicting protein structure. It covers the progression from established protein modeling to state-of-the-art artificial intelligence (AI) frameworks. The paper will start with a brief introduction to protein structures, protein modeling, and AI. The section on established protein modeling will discuss homology modeling, ab initio modeling, and threading. The next section is deep learning-based models. It introduces some state-of-the-art AI models, such as AlphaFold (AlphaFold, AlphaFold2, AlphaFold3), RoseTTAFold, ProteinBERT, etc. This section also discusses how AI techniques have been integrated into established frameworks like Swiss-Model, Rosetta, and I-TASSER. The model performance is compared using the rankings of CASP14 (Critical Assessment of Structure Prediction) and CASP15. CASP16 is ongoing, and its results are not included in this review. Continuous Automated Model EvaluatiOn (CAMEO) complements the biennial CASP experiment. Template modeling score (TM-score), global distance test total score (GDT_TS), and Local Distance Difference Test (lDDT) score are discussed too. This paper then acknowledges the ongoing difficulties in predicting protein structure and emphasizes the necessity of additional searches like dynamic protein behavior, conformational changes, and protein-protein interactions. In the application section, this paper introduces some applications in various fields like drug design, industry, education, and novel protein development. In summary, this paper provides a comprehensive overview of the latest advancements in established protein modeling and deep learning-based models for protein structure predictions. It emphasizes the significant advancements achieved by AI and identifies potential areas for further investigation.


Assuntos
Aprendizado Profundo , Modelos Moleculares , Conformação Proteica , Proteínas , Proteínas/química , Inteligência Artificial , Biologia Computacional/métodos
7.
Insights Imaging ; 15(1): 209, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143273

RESUMO

OBJECTIVE: To conduct a bibliometric analysis of the prospects and obstacles associated with dual- and multi-energy CT in thoracic disease, emphasizing its current standing, advantages, and areas requiring attention. METHODS: The Web of Science Core Collection was queried for relevant publications in dual- and multi-energy CT and thoracic applications without a limit on publication date or language. The Bibliometrix packages, VOSviewer, and CiteSpace were used for data analysis. Bibliometric techniques utilized were co-authorship analyses, trend topics, thematic map analyses, thematic evolution analyses, source's production over time, corresponding author's countries, and a treemap of authors' keywords. RESULTS: A total of 1992 publications and 7200 authors from 313 different sources were examined in this study. The first available document was published in November 1982, and the most cited article was cited 1200 times. Siemens AG in Germany emerged as the most prominent author affiliation, with a total of 221 published articles. The most represented scientific journals were the "European Radiology" (181 articles, h-index = 46), followed by the "European Journal of Radiology" (148 articles, h-index = 34). Most of the papers were from Germany, the USA, or China. Both the keyword and topic analyses showed the history of dual- and multi-energy CT and the evolution of its application hotspots in the chest. CONCLUSION: Our study illustrates the latest advances in dual- and multi-energy CT and its increasingly prominent applications in the chest, especially in lung parenchymal diseases and coronary artery diseases. Photon-counting CT and artificial intelligence will be the emerging hot technologies that continue to develop in the future. CRITICAL RELEVANCE STATEMENT: This study aims to provide valuable insights into energy-based imaging in chest disease, validating the clinical application of multi-energy CT together with photon-counting CT and effectively increasing utilization in clinical practice. KEY POINTS: Bibliometric analysis is fundamental to understanding the current and future state of dual- and multi-energy CT. Research trends and leading topics included coronary artery disease, pulmonary embolism, and radiation dose. All analyses indicate a growing interest in the use of energy-based imaging techniques for thoracic applications.

8.
Clin Epigenetics ; 16(1): 106, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143611

RESUMO

BACKGROUND: Age-related eye diseases (AREDs) have become increasingly prevalent with the aging population, serving as the leading causes of visual impairment worldwide. Epigenetic clocks are generated based on DNA methylation (DNAm) levels and are considered one of the most promising predictors of biological age. This study aimed to investigate the bidirectional causal association between epigenetic clocks and common AREDs or glaucoma endophenotypes. METHODS: Instrumental variables for epigenetic clocks, AREDs, and glaucoma endophenotypes were obtained from corresponding genome-wide association study data of European descent. Bidirectional two-sample Mendelian randomization (MR) was employed to explore the causal relationship between epigenetic clocks and AREDs or glaucoma endophenotypes. Multivariable MR (MVMR) was used to determine whether glaucoma endophenotypes mediated the association of epigenetic clocks with glaucoma. Multiple sensitivity analyses were conducted to confirm the robustness of MR estimates. RESULTS: The results showed that an increased intrinsic epigenetic age acceleration (HorvathAge) was significantly associated with an increased risk of primary open-angle glaucoma (OR = 1.04, 95% CI 1.02 to 1.06, P = 6.1E-04). The epigenetic age acceleration (EEA) of HannumAge was related to a decreased risk of primary angle-closure glaucoma (OR = 0.92, 95% CI 0.86 to 0.99, P = 0.035). Reverse MR analysis showed that age-related cataract was linked to decreased HannumAge (ß = -0.190 year, 95% CI -0.374 to -0.008, P = 0.041). The EEA of HannumAge (ß = -0.85 µm, 95% CI -1.57 to -0.14, P = 0.019) and HorvathAge (ß = -0.63 µm, 95% CI -1.18 to -0.08, P = 0.024) were associated with decreased central corneal thickness (CCT). PhenoAge was related to an increased retinal nerve fiber layer thickness (ß = 0.06 µm, 95% CI 0.01 to 0.11, P = 0.027). MVMR analysis found no mediation effect of CCT in the association of HannumAge and HorvathAge with glaucoma. DNAm-based granulocyte proportions were significantly associated with presbyopia, rhegmatogenous retinal detachment, and intraocular pressure (P < 0.05). DNAm-based plasminogen activator inhibitor-1 levels were significantly related to age-related macular degeneration and intraocular pressure (P < 0.05). CONCLUSION: The present study revealed a causal association between epigenetic clocks and AREDs. More research is warranted to clarify the potential mechanisms of the biological aging process in AREDs.


Assuntos
Envelhecimento , Metilação de DNA , Endofenótipos , Epigênese Genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Epigênese Genética/genética , Estudo de Associação Genômica Ampla/métodos , Metilação de DNA/genética , Masculino , Envelhecimento/genética , Feminino , Glaucoma/genética , Pessoa de Meia-Idade , Glaucoma de Ângulo Aberto/genética , Idoso , Predisposição Genética para Doença
9.
Transl Vis Sci Technol ; 13(8): 40, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39177992

RESUMO

Purpose: To determine endothelial cell density (ECD) from real-world donor cornea endothelial cell (EC) images using a self-supervised deep learning segmentation model. Methods: Two eye banks (Eversight, VisionGift) provided 15,138 single, unique EC images from 8169 donors along with their demographics, tissue characteristics, and ECD. This dataset was utilized for self-supervised training and deep learning inference. The Cornea Image Analysis Reading Center (CIARC) provided a second dataset of 174 donor EC images based on image and tissue quality. These images were used to train a supervised deep learning cell border segmentation model. Evaluation between manual and automated determination of ECD was restricted to the 1939 test EC images with at least 100 cells counted by both methods. Results: The ECD measurements from both methods were in excellent agreement with rc of 0.77 (95% confidence interval [CI], 0.75-0.79; P < 0.001) and bias of 123 cells/mm2 (95% CI, 114-131; P < 0.001); 81% of the automated ECD values were within 10% of the manual ECD values. When the analysis was further restricted to the cropped image, the rc was 0.88 (95% CI, 0.87-0.89; P < 0.001), bias was 46 cells/mm2 (95% CI, 39-53; P < 0.001), and 93% of the automated ECD values were within 10% of the manual ECD values. Conclusions: Deep learning analysis provides accurate ECDs of donor images, potentially reducing analysis time and training requirements. Translational Relevance: The approach of this study, a robust methodology for automatically evaluating donor cornea EC images, could expand the quantitative determination of endothelial health beyond ECD.


Assuntos
Endotélio Corneano , Doadores de Tecidos , Humanos , Endotélio Corneano/citologia , Feminino , Masculino , Pessoa de Meia-Idade , Contagem de Células/métodos , Adulto , Idoso , Aprendizado Profundo , Bancos de Olhos , Processamento de Imagem Assistida por Computador/métodos , Adulto Jovem , Adolescente , Idoso de 80 Anos ou mais
10.
Ecotoxicol Environ Saf ; 284: 116906, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182283

RESUMO

BACKGROUND: Calcitriol (Cal) is the most active metabolite of vitamin D and has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the role of Cal in noise-induced hearing loss (NIHL) to further elucidate the mechanism of noise-induced oxidative stress in the mouse cochlea. METHODS: C57BL/6 J mice were given six intraperitoneal injections of Cal (500 ng/kg/d). After 14 days of noise exposure, auditory brainstem response (ABR) thresholds, and the cochlear outer hair cell loss rate were analysed to evaluate auditory function. Real-time fluorescence quantitative PCR, immunofluorescence and western blotting were performed in vitro after the treatment of cochlear explants with 100 µM tert-butyl hydroperoxide (TBHP) for 2.5 h and HEI-OC1 cells with 250 µM TBHP for 1.5 h. RESULTS: In vivo experiments confirmed that Cal pretreatment mitigated NIHL and outer hair cell death. The in vitro results demonstrated that Cal significantly reduced TBHP-induced cochlear auditory nerve fibre degradation and spiral ganglion neuron damage. Moreover, treatment with Cal inhibited the expression of oxidative stress-related factors (3-NT and 4-HNE) and DNA damage-related factors (γ-H2A.X) and attenuated TBHP-induced apoptosis in cochlear explants and HEI-OC1 cells. A total of 1479 upregulated genes and 1443 downregulated genes were screened in cochlear tissue 1 h after noise exposure. The level of transcription factor 3 (ATF3) was significantly elevated in HEI-OC1 cells after TBHP stimulation. Gene Transcription Regulation Database (GTRD)and Cistrome database analyses revealed that the downstream target gene of ATF3 is dual specificity phosphatase 1 (DUSP1). Cistrome DB Toolkit database results showed that the transcription factor of DUSP1 was ATF3. In addition, the ChIP-PCR results indicated that ATF3 might be a direct transcription factor of DUSP1. CONCLUSION: The results of our study suggest that Cal attenuates NIHL and inhibits noise-induced apoptosis by regulating the ATF3/DUSP1 signalling pathway.

11.
Asian J Urol ; 11(3): 377-383, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39139535

RESUMO

Objective: To describe and evaluate the technique using bilateral Boari flap ureteroneocystostomy (BBFUNC) for bilateral mid-lower ureteral strictures. Methods: We retrospectively reviewed five patients who underwent minimally invasive BBFUNC in our institution (Union Hospital, Wuhan, China) between July 2019 and December 2021. The bilateral ureters were mobilized and transected above the stenotic segments. The bladder was isolated and incised longitudinally from the middle of the anterior wall. Then, an inverted U-shaped bladder flap was created on both sides, fixed onto the psoas tendon, and anastomosed to the ipsilateral distal normal ureter. Following double-J stenting, the Boari flaps were tubularized, and the bladder was closed with continuous sutures. The patients' perioperative data and follow-up outcomes were collected, and a descriptive statistical analysis was performed. Results: No case converted to open surgery, and no intraoperative complication occurred. The median surgical time was 230 (range 203-294) min. The median length of the bladder flaps was 6.2 (range 4.3-10.0) cm on the left and 5.5 (range 4.7-10.5) cm on the right side. All patients had not developed recurrent ureteral stenosis during the median follow-up time of 17 (range 16-45) months and had a normal maximum flow rate after surgery. The median post-void residual was 7 (range 0-19) mL. The maximal bladder capacity was decreased in one (20%) patient. Conclusion: The present study demonstrates that minimally invasive BBFUNC is feasible and safe in treating bilateral mid-lower ureteral strictures, and the impact on lower urinary tract function is limited.

13.
Front Pharmacol ; 15: 1365639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021837

RESUMO

Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.

14.
Ocul Surf ; 34: 124-131, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033974

RESUMO

Breast cancer is the most prevalent cancer worldwide. With advancements in breast cancer diagnosis and treatment, the prognosis of patients with early-stage cancer has significantly improved. Enhancing the long-term quality of life of patients after antineoplastic therapy, including visual quality, has become a crucial research focus. This review aims to comprehensively summarize dry eye disease adverse reaction resulting from pharmacotherapy for early-stage breast cancer. Through a review of the relevant literature, this study explored the etiology, clinical features, and potential therapeutic strategies for drug-induced dry eye disease in breast cancer treatment. A thorough understanding of the medication-induced dry eye disease adverse reaction aid clinicians in monitoring and managing patients' ocular health more effectively, facilitating early diagnosis and intervention, preventing complications, and ensuring optimal visual protection for patients undergoing breast cancer treatment.

15.
Respiration ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047695

RESUMO

Introduction:Exacerbations of chronic obstructive pulmonary disease (COPD) have a significant impact on hospitalizations, morbidity, and mortality of patients. This study aimed to develop a model for predicting acute exacerbation in COPD patient (AECOPD) based on deep learning (DL) features. METHODS: We performed a retrospective study on 219 patients with COPD who underwent inspiratory and expiratory HRCT scans. By recording the acute respiratory events of the previous year, these patients were further divided into Non-AECOPD group and AECOPD group according to the presence of acute exacerbation events. 69 Quantitative CT (QCT) parameters of emphysema and airway were calculated by NeuLungCARE software and 2000 DL features were extracted by VGG-16 method. The Logistic regression method was employed to identify AECOPD patients and 29 patients of external validation cohort were used to access the robustness of the results. RESULTS: The Model 3-B achieved an AUC of 0.933, and 0.865 in the testing cohort and external validation cohort respectively. Model 3-I obtained AUC of 0.895 in the testing cohort and AUC of 0.774 in the external validation cohort. Model 7-B combined clinical characteristics, QCT parameters, and DL features achieved the best performance with an AUC of 0.979 in the testing cohort and demonstrating robust predictability with an AUC of 0.932 in the external validation cohort. Likewise, Model 7-I achieving an AUC of 0.938, and 0.872 in the testing cohort and external validation cohort respectively. CONCLUSIONS: DL features extracted from HRCT scans can effectively predict acute exacerbation phenotype in COPD patients.

16.
J Am Chem Soc ; 146(28): 19449-19459, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953865

RESUMO

Mechanical recycling is one of the simplest and most economical strategies to address ever-increasing plastic pollution, but it cannot be applied to immiscible mixed plastics and suffers from property deterioration after each cycle. By combining the amphiphilic block copolymer strategy and reactive compatibilization strategy, we designed a series of stapler strategies for compatibilizing/upcycling mixed plastics. First, various functionalized graft copolymers were accessed via different synthetic routes. Subsequently, the addition of a very small amount of stapler molecules induced a synergistic effect with the graft copolymers that improved the compatibility and mechanical properties of mixed plastics. These strategies were highly effective for various binary/ternary plastic systems and can be directly applied to postconsumer waste plastics, which can increase the toughness of mixed postconsumer waste plastics by 162 times. Most importantly, it also effectively improved the impact resistance, adhesion performance, and three-dimensional (3D) printing performance of mixed plastics, and permitted the recycling of plastic blends 20 times with minimal degradation in their mechanical properties.

17.
ISME Commun ; 4(1): ycae087, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39011280

RESUMO

The shift between photoautotrophic and phagotrophic strategies in mixoplankton significantly impacts the planktonic food webs and biogeochemical cycling. Considering the projected global warming, studying how temperature impacts this shift is crucial. Here, we combined the transcriptome of in-lab cultures (mixotrophic dinoflagellate Lepidodinium sp.) and the metatranscriptome dataset of the global ocean to investigate the mechanisms underlying the shift of trophic strategies and its relationship with increasing temperatures. Our results showed that phagocytosis-related pathways, including focal adhesion, regulation of actin cytoskeleton, and oxidative phosphorylation, were significantly stimulated in Lepidodinium sp. when cryptophyte prey were added. We further compared the expression profiles of photosynthesis and phagocytosis genes in Lepidodinium sp. in the global sunlit ocean. Our results indicated that Lepidodinium sp. became more phagotrophic with increasing temperatures when the ambient chlorophyll concentration was >0.3 mg.m-3 (~20.58% of the ocean surface) but became more photoautotrophic with increasing temperatures when the chlorophyll concentration was between 0.2 and 0.3 mg.m-3 (~11.47% of the ocean surface). Overall, we emphasized the crucial role of phagocytosis in phago-mixotrophy and suggested that the expression profile of phagocytosis genes can be a molecular marker to target the phagotrophic activity of mixoplankton in situ.

18.
J Fungi (Basel) ; 10(7)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39057359

RESUMO

Seagrass serves as a quintessential reservoir for obligate marine Lulworthiaceae fungi. Our current knowledge of the mycological diversity associated with seagrass in Hong Kong remains poor. We analyzed the diversity of fungi associated with the most widely distributed seagrass species in Hong Kong Halophila ovalis (Hydrocharitaceae), using a combination of culture-based methods and high-throughput amplicon sequencing. Halophilomyces hongkongensis, a novel fungal species in a newly proposed genus within the Lulworthiaceae family, was isolated from H. ovalis roots and rhizomes. The novel fungus showed distinct morphological characteristics, while both combined 18S-28S and internal transcribed spacer (ITS) phylogenetic trees based on maximum likelihood and Bayesian methods supported its discrimination from other existing Lulworthiaceae members. The ITS2 region in the Illumina sequencing results of multiple H. ovalis compartments, water, and adjacent non-seagrass sediments revealed continuous recruitment of H. hongkongensis by H. ovalis throughout the year despite dramatically fluctuating environmental conditions, with remarkably high proportions of this taxon found in root and rhizome internal tissues, possibly indicating a strong and specialized relationship established between the Lulworthiaceae fungal partner and its seagrass host. The inhibitory abilities exhibited by H. hongkongensis against Staphylococcus aureus SA29213 and ATCC 43300 (methicillin-resistant) may imply its capacity in producing (novel) antibacterial compounds. The discovery of H. hongkongensis as the first novel Lulworthiaceae taxon in Hong Kong, along with its distributional pattern in the seagrass meadow, provides valuable insights into the systematics and ecology of this strictly marine fungal family.

19.
Plant Physiol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976569

RESUMO

Temperature is one of the key environmental factors influencing crop fertility and yield. Understanding how plants sense and respond to temperature changes is, therefore, crucial for improving agricultural production. In this study, we characterized a temperature-sensitive male-sterile mutant in rice (Oryza sativa), glutamyl-tRNA synthetase 1-2 (ers1-2), that shows reduced fertility at high temperatures and restored fertility at low temperatures. Mutation of ERS1 resulted in severely delayed pollen development and meiotic progression at high temperatures, eventually leading to male sterility. Moreover, meiosis-specific events, including synapsis and crossover formation, were also delayed in ers1-2 compared with the wild type. However, these defects were all mitigated by growing ers1-2 at low temperatures. Transcriptome analysis and measurement of ascorbate, glutathione, and hydrogen peroxide (H2O2) contents revealed that the delayed meiotic progression and male sterility in ers1-2 were strongly associated with changes in reactive oxygen species (ROS) homeostasis. At high temperatures, ers1-2 exhibited decreased accumulation of ROS scavengers and overaccumulation of ROS. In contrast, at low temperatures, the antioxidant system of ROS was more active, and ROS contents were lower. These data suggest that ROS homeostasis in ers1-2 is disrupted at high temperatures but restored at low temperatures. We speculate that ERS1 dysfunction leads to changes in ROS homeostasis under different conditions, resulting in delayed or rescued meiotic progression and thermosensitive male fertility. ers1-2 may hold great potential as a thermosensitive material for crop heterosis breeding.

20.
Adv Sci (Weinh) ; : e2309058, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007178

RESUMO

Rock-climbing robots have significant potential in fieldwork and planetary exploration. However, they currently face limitations such as a lack of stability and adaptability on extreme terrains, slow locomotion, and single functionality. This study introduces a novel multimodal and adaptive rock-climbing robot (MARCBot), which addresses these limitations through spiny grippers that draw inspiration from morpho-functionalities observed in beetles, arboreal birds, and hoofed animals. This hybrid bioinspired design enables high attachment strength, passive adaptability to different terrains, and quick attachment on rock surfaces. The multimodal functionality of the gripper allows for attachment during climbing and support during walking. A novel control strategy using dynamics and quadratic programming (QP) optimizes attachment wrench distribution, reducing cost-of-transport by 20.03% and 6.05% compared to closed-loop inverse kinematic (CLIK) and virtual model control (VMC) methods, respectively. MARCBot achieved climbing speeds of 0.15 m min-1 on a vertical discrete rock surface under gravity and trotting speeds of up to 0.21 m s-1 on various complex terrains. It is the first robot capable of climbing on rock surfaces and trotting in complex terrains without the need for switching end-effectors. This study highlights significant advancements in climbing and multimodal locomotion for robots in extreme environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...