Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 757
Filtrar
1.
Dalton Trans ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221457

RESUMO

Cyclometalated iridium(III) compounds have been widely explored due to their outstanding photo-physical properties and multiple anticancer activities. In this paper, three cyclometalated iridium(III) compounds [Ir(ppy)2(DBDIP)]PF6 (5a), [Ir(bzq)2(DBDIP)]PF6 (5b), and [Ir(piq)2(DBDIP)]PF6 (5c) (ppy: 2-phenylpyridine; bzq: benzo[h]quinoline; piq: 1-phenylisoquinoline, and DBDIP: 2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and the mechanism of antitumor activity was investigated. Compounds photoactivated by visible light show strong cytotoxicity against tumor cells, especially toward A549 cells. Biological experiments such as migration, cellular localization, mitochondrial membrane potential and permeability, reactive oxygen species (ROS) and calcium ion level detection were performed, and they demonstrated that the compounds induced the apoptosis of A549 cells through a mitochondrial pathway. At the same time, oxidative stress caused by ROS production increases the release of damage-related molecules and the expression of porogen gasdermin D (GSDMD), and the content of LDH released from damaged cell membranes also increased. Besides, the content of the lipid peroxidation product, malondialdehyde (MDA), increased and the expression of GPX4 decreased. These indicate that the compounds promote cell death by combining ferroptosis and pyroptosis. The results reveal that cyclometalated iridium(III) compounds 5a-5c may be a potential chemotherapeutic agent for photodynamic therapy of cancers.

2.
Foods ; 13(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39123576

RESUMO

Lycium barbarum L., an important functional food in China, has antioxidant and antiaging activity. However, the exact antioxidant activity mechanism of Lycium barbarum extracts (LBE) is not well understood. Therefore, a carbendazim (CBZ)-induced PC12 cell injury model was constructed and vitrificated to study the antioxidant activity of fresh LBE on the basis of extraction parameter optimization via the full factorial design of experiments (DOE) method. The results showed that the pretreatment of PC12 cells with LBE could reduce the reactive oxygen species (ROS) level by 14.6% and inhibited the mitochondrial membrane potential (MMP) decline by 12.0%. Furthermore, the integrated analysis revealed that LBE played an antioxidant role by activating oxidative phosphorylation (OXPHOS) and restoring MMP, maintaining the tricarboxylic acid (TCA) cycle stability, and regulating the GSH metabolic pathway. The results of the present study provide new ideas for the understanding of the antioxidant function of LBE from a global perspective.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39078761

RESUMO

This work proposes a classification system for arrhythmias, aiming to enhance the efficiency of the diagnostic process for cardiologists. The proposed algorithm includes a naive preprocessing procedure for electrocardiography (ECG) data applicable to various ECG databases. Additionally, this work proposes an ultralightweight model for arrhythmia classification based on a convolutional neural network and incorporating R-peak interval features to represent long-term rhythm information, thereby improving the model's classification performance. The proposed model is trained and tested by using the MIT-BIH and NCKU-CBIC databases in accordance with the classification standards of the Association for the Advancement of Medical Instrumentation (AAMI), achieving high accuracies of 98.32% and 97.1%. This work applies the arrhythmia classification algorithm to a web-based system, thus providing a graphical interface. The cloud-based execution of automated artificial intelligence (AI) classification allows cardiologists and patients to view ECG wave conditions instantly, thereby remarkably enhancing the quality of medical examination. This work also designs a customized integrated circuit for the hardware implementation of an AI accelerator. The accelerator utilizes a parallelized processing element array architecture to perform convolution and fully connected layer operations. It introduces proposed hybrid stationary techniques, combining input and weight stationary modes to increase data reuse drastically and reduce hardware execution cycles and power consumption, ultimately achieving high-performance computing. This accelerator is implemented in the form of a chip by using the TSMC 180 nm CMOS process. It exhibits a power consumption of 122 µW, a classification latency of 6.8 ms, and an energy efficiency of 0.83 µJ/classification.

4.
Front Immunol ; 15: 1408710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947320

RESUMO

Background: Interleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses. Methods: We generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells. Results: IL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function. Conclusion: IL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.


Assuntos
Interleucina-17 , Camundongos Knockout , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Interleucina-17/metabolismo , Camundongos , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Modelos Animais de Doenças
5.
J Agric Food Chem ; 72(31): 17377-17391, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051843

RESUMO

Bufadienolides (BDs) are a class of naturally occurring toxins present in amphibian toads. Serving as the chemical weapons, they exist not only in the adult toads but also in toad eggs. Guided by mass spectrometry (MS)-based component analysis and feature-based molecular networking (FBMN), 30 bufadienolide-fatty acid conjugates (BDFs) were isolated from the fertilized eggs of toad Bufo gargrizans, including 25 previously undescribed compounds (1-25). Their chemical structures were elucidated by extensive spectroscopic analysis, chemical methods, and GC-MS. The toxicities of all BDFs and their corresponding free BDs were assessed using the zebrafish model. The structure-toxicity relationship analysis showed that the modification of BDs by hydroxy fatty acids can cause a significant increase of the toxicity. Furthermore, all the isolated compounds were evaluated for their antiproliferative activities in pancreatic cancer cell lines ASPC-1 and PANC10.05. The structure-activity relationship (SAR) analysis revealed that BDFs with hellebrigenin as the bufogenin moiety (6 and 7) exhibited the most potent antiproliferative effect. Further investigation into their functional mechanism demonstrated that 6 and 7 induced apoptosis in pancreatic cancer cells PANC10.05 and significantly suppressed the expression of the apoptosis-related gene c-MYC. In addition, 6 and 7 effectively inhibited the expression of the PI3K/Akt/mTOR pathway in PANC10.05. Moreover, we assessed the efficacy of 6 and 7 on cancer cells from various tissues and observed their broad-spectrum antiproliferative activity.


Assuntos
Bufanolídeos , Bufonidae , Proliferação de Células , Ácidos Graxos , Peixe-Zebra , Animais , Bufanolídeos/química , Bufanolídeos/farmacologia , Bufanolídeos/toxicidade , Bufanolídeos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Ácidos Graxos/toxicidade , Relação Estrutura-Atividade , Zigoto/efeitos dos fármacos , Zigoto/química , Estrutura Molecular
6.
BMC Plant Biol ; 24(1): 731, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085772

RESUMO

BACKGROUND: In the field of ornamental horticulture, phenotypic mutations, particularly in leaf color, are of great interest due to their potential in developing new plant varieties. The introduction of variegated leaf traits in plants like Heliopsis helianthoides, a perennial herbaceous species with ecological adaptability, provides a rich resource for molecular breeding and research on pigment metabolism and photosynthesis. We aimed to explore the mechanism of leaf variegation of Heliopsis helianthoides (using HY2021F1-0915 variegated mutant named HY, and green-leaf control check named CK in 2020 April, May and June) by analyzing the transcriptome and metabolome. RESULTS: Leaf color and physiological parameters were found to be significantly different between HY and CK types. Chlorophyll content of HY was lower than that of CK samples. Combined with the result of Weighted Gene Co-expression Network Analysis (WGCNA), 26 consistently downregulated differentially expressed genes (DEGs) were screened in HY compared to CK subtypes. Among the DEGs, 9 genes were verified to be downregulated in HY than CK by qRT-PCR. The reduction of chlorophyll content in HY might be due to the downregulation of FSD2. Low expression level of PFE2, annotated as ferritin-4, might also contribute to the interveinal chlorosis of HY. Based on metabolome data, differential metabolites (DEMs) between HY and CK samples were significantly enriched on ABC transporters in three months. By integrating DEGs and DEMs, they were enriched on carotenoids pathway. Downregulation of four carotenoid pigments might be one of the reasons for HY's light color. CONCLUSION: FSD2 and PFE2 (ferritin-4) were identified as key genes which likely contribute to the reduced chlorophyll content and interveinal chlorosis observed in HY. The differential metabolites were significantly enriched in ABC transporters. Carotenoid biosynthesis pathway was highlighted with decreased pigments in HY individuals. These findings not only enhance our understanding of leaf variegation mechanisms but also offer valuable insights for future plant breeding strategies aimed at preserving and enhancing variegated-leaf traits in ornamental plants.


Assuntos
Metaboloma , Folhas de Planta , Transcriptoma , Folhas de Planta/metabolismo , Folhas de Planta/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Pigmentação/genética
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124828, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029204

RESUMO

Zn2+ plays a vital role in regulating various life processes, such as gene expression, cell signaling, and brain function. In this study, a near-infrared fluorescent probe AXS was synthesized to detect Zn2+ with good fluorescence specificity, high selectivity, and high sensitivity; the detection limit of Zn2+ was 6.924 × 10-11 M. The mechanism of Zn2+ recognition by the AXS probe was investigated by 1H nuclear magnetic resonance titrations, UV-visible spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and high-resolution mass spectrometry. Test paper experiments showed that the AXS probe could detect Zn2+ in real samples. In addition, quantitative and qualitative detection of Zn2+ in common foodstuffs was achieved. For portable Zn2+ detection, a smartphone detection platform was also developed based on the AXS probe. Importantly, the AXS probe showed good bioimaging capabilities in Caenorhabditis elegans and mice.


Assuntos
Caenorhabditis elegans , Corantes Fluorescentes , Zinco , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Zinco/análise , Camundongos , Espectrometria de Fluorescência/métodos , Limite de Detecção , Smartphone , Imagem Óptica/métodos
8.
Int J Gen Med ; 17: 2791-2800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962174

RESUMO

Purpose: Pain is a common yet undertreated symptom of Parkinson's disease (PD). This study investigated the effect of Gua Sha therapy on pain in patients with PD. Patients and Methods: A total of 56 PD patients with pain were randomized into either the experimental group (n=28), receiving 12 sessions of Gua Sha therapy, or the control group (n=28) without additional treatment. Participants underwent assessment at baseline, after the twelfth invention, and at the 2-month follow-up timepoints. The primary outcome was KPPS and VAS. Secondary outcomes included UPDRS I-III, PDSS-2, HADS, PDQ-39, and blood biomarkers (5-HT, IL-8, IL-10). Results: The experimental group reported a significant improvement in pain severity, motor functions, affective disorder, and sleep quality (P < 0.05). Furthermore, increasing trends in both 5-HT and IL-10, as well as decreasing trends in IL-8 were observed. No serious adverse events occurred. Conclusion: The preliminary findings suggest that Gua Sha therapy may be effective and safe for alleviating pain and improving other disease-related symptoms in PD patients.

9.
Phytomedicine ; 132: 155840, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941817

RESUMO

BACKGROUND: Hypoxic pulmonary vascular remodeling (HPVR) is a key pathological feature of hypoxic pulmonary hypertension (HPH). Oxygen-sensitive potassium (K+) channels in pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPVR. Luteolin (Lut) is a plant-derived flavonoid compound with variety of pharmacological actions. Our previous study found Lut alleviated HPVR in HPH rat. PURPOSE: To elucidate the mechanism by which Lut mitigated HPVR, focusing on oxygen-sensitive voltage-dependent potassium channel 1.5 (Kv1.5). METHODS: HPH rat model was established using hypobaric chamber to simulate 5000 m altitude. Isolated perfused/ventilated rat lung, isolated pulmonary arteriole ring was utilized to investigate the impact of Lut on K+ channels activity. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was assessed. CyclinD1, CDK4, PCNA, Bax, Bcl-2, cleaved caspase-3 levels in lung tissue of HPH rat were tested. The effect of Lut on Kv1.5, cytoplasmic free calcium concentration ([Ca2+]cyt), CyclinD1, CDK4, PCNA, Bax/Bcl-2 was examined in PASMCs under hypoxia, with DPO-1 as a Kv1.5 specific inhibitor. The binding affinity between Lut and Kv1.5 in PASMCs was detected by drug affinity responsive target stability (DARTS). The overexpression of KCNA5 gene (encoding Kv1.5) in HEK293T cells was utilized to confirm the interaction between Lut and Kv1.5. Furthermore, the impact of Lut on mitochondrial structure, SOD, GSH, GSH-Px, MDA and HIF-1α levels were evaluated in lung tissue of HPH rat and PASMCs under hypoxia. RESULTS: Lut dilated pulmonary artery by directly activating Kv and Ca2+-activated K+ channels (KCa) in smooth muscle. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was upregulated by Lut. Lut downregulated CyclinD1, CDK4, PCNA while upregulating Bax/Bcl-2/caspase-3 axis in lung tissue of HPH rat. Lut decreased [Ca2+]cyt, reduced CDK4, CyclinD1, PCNA, increased Bax/Bcl-2 ratio, in PASMCs under hypoxia, by upregulating Kv1.5. The binding affinity and the interaction between Lut and Kv1.5 was verified in PASMCs and in HEK293T cells. Lut also decreased [Ca2+]cyt and inhibited proliferation via targeting Kv1.5 of HEK293T cells under hypoxia. Furthermore, Lut protected mitochondrial structure, increased SOD, GSH, GSH-Px, decreased MDA, in lung tissue of HPH rat. Lut downregulated HIF-1α level in both lung tissue of HPH rat and PASMCs under hypoxia. CONCLUSION: Lut alleviated HPVR by promoting vasodilation of pulmonary artery, reducing cellular proliferation, and inducing apoptosis through upregulating of Kv1.5 in PASMCs.


Assuntos
Hipertensão Pulmonar , Hipóxia , Canal de Potássio Kv1.5 , Luteolina , Miócitos de Músculo Liso , Artéria Pulmonar , Ratos Sprague-Dawley , Remodelação Vascular , Animais , Canal de Potássio Kv1.5/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Masculino , Hipóxia/tratamento farmacológico , Luteolina/farmacologia , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Regulação para Cima/efeitos dos fármacos , Células HEK293 , Modelos Animais de Doenças , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo
10.
Gait Posture ; 113: 145-150, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38901386

RESUMO

BACKGROUND: Turning difficulties have been reported in stroke persons, but studies have indicated that fall history might not significantly affect turning performance. Fear of falling (FOF) is common after a fall, although it can occur in individuals without a fall history. RESEARCH QUESTION: Could FOF have an impact on turning performance among chronic stroke patients? METHODS: This cross-sectional study recruited 97 stroke persons. They were instructed to perform 180° and 360° turns, and their performance was represented by angular velocity. FOF was evaluated using the Falls Efficacy Scale-International (FES-I). Falls that occurred 12 months prior to the study assessment were recorded. RESULTS: A higher FES-I score was significantly correlated with a decline in angular velocity in all turning tasks after adjustment for demographic data. The correlation remained significant after controlling for falls history. Participants with a high level of FOF exhibited significantly slower angular velocities during all turning tasks compared with those with a low level of FOF. Participants with a moderate level of FOF had a significantly slower angular velocity than did those with a low level of FOF during the 360° turn to the paretic side only. SIGNIFICANCE: A higher level of FOF, regardless of fall history, was significantly associated with a reduced angular velocity during turning. A high level of FOF affected turning performance in all tasks. Turning performance may not be affected by fall experience. Anxiety about falling may have a greater effect on turning performance than does fall history.

11.
Med Image Anal ; 97: 103229, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38897033

RESUMO

Arrhythmia is a major cardiac abnormality in fetuses. Therefore, early diagnosis of arrhythmia is clinically crucial. Pulsed-wave Doppler ultrasound is a commonly used diagnostic tool for fetal arrhythmia. Its key step for diagnosis involves identifying adjacent measurable cardiac cycles (MCCs). As cardiac activity is complex and the experience of sonographers is often varied, automation can improve user-independence and diagnostic-validity. However, arrhythmias pose several challenges for automation because of complex waveform variations, which can cause major localization bias and missed or false detection of MCCs. Filtering out non-MCC anomalies is difficult because of large intra-class and small inter-class variations between MCCs and non-MCCs caused by agnostic morphological waveform variations. Moreover, rare arrhythmia cases are insufficient for classification algorithms to adequately learn discriminative features. Using only normal cases for training, we propose a novel hierarchical online contrastive anomaly detection (HOCAD) framework for arrhythmia diagnosis during test time. The contribution of this study is three-fold. First, we develop a coarse-to-fine framework inspired by hierarchical diagnostic logic, which can refine localization and avoid missed detection of MCCs. Second, we propose an online learning-based contrastive anomaly detection with two new anomaly scores, which can adaptively filter out non-MCC anomalies on a single image during testing. With these complementary efforts, we precisely determine MCCs for correct measurements and diagnosis. Third, to the best of our knowledge, this is the first reported study investigating intelligent diagnosis of fetal arrhythmia on a large-scale and multi-center ultrasound dataset. Extensive experiments on 3850 cases, including 266 cases covering three typical types of arrhythmias, demonstrate the effectiveness of the proposed framework.


Assuntos
Arritmias Cardíacas , Ultrassonografia Pré-Natal , Humanos , Arritmias Cardíacas/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Gravidez , Feminino , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos
12.
Cancer Gene Ther ; 31(7): 1007-1017, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898209

RESUMO

Activation of Gasdermin D (GSDMD) results in its cleavage, oligomerization, and subsequent formation of plasma membrane pores, leading to a form of inflammatory cell death denoted as pyroptosis. The roles of GSDMD in inflammation and immune responses to infection are well documented. However, whether GSDMD also plays a role in sporadic cancer development, especially that in the gut epithelium, remains unknown. Here, we show that GSDMD is activated in colorectal tumors of both human and mouse origins. Ablation of GSDMD in a mouse model of sporadic colorectal cancer resulted in reduced tumor formation in the colon and rectum, suggesting a tumor-promoting role of the protein in the gut. Both antibiotic-mediated depletion of gut microbiota and pharmacological inhibition of NLRP3 inflammasome reduced the activation of GSDMD. Loss of GSDMD resulted in reduced infiltration of immature myeloid cells, and increased numbers of macrophages in colorectal tumors. Activation of GSDMD is also accompanied by the aggregation of the endosomal sorting complex required for transport (ESCRT) membrane repair proteins on the membrane of colorectal tumor cells, suggesting that active membrane repairment may prevent pyroptosis induced by the formation of GSDMD pore in tumor cells. Our results show that gut microbiota/NLRP3-mediated activation of GSDMD promotes the development of colorectal tumors, and supports the use of NLRP3 inhibitors to treat colon cancer.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Ligação a Fosfato , Animais , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Carcinogênese/metabolismo , Inflamassomos/metabolismo , Piroptose , Modelos Animais de Doenças , Gasderminas
13.
Food Res Int ; 187: 114315, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763628

RESUMO

Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.


Assuntos
Bactérias , Capsicum , Fermentação , Odorantes , Paladar , Compostos Orgânicos Voláteis , Capsicum/microbiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Odorantes/análise , Bactérias/metabolismo , Bactérias/classificação , Microbiologia de Alimentos , Fungos/metabolismo , Fungos/classificação , Aminoácidos/análise , Aminoácidos/metabolismo , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Redes e Vias Metabólicas , Aromatizantes/metabolismo , Aromatizantes/análise
14.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690729

RESUMO

The myosin inhibitor mavacamten has transformed the management of obstructive hypertrophic cardiomyopathy (HCM) by targeting myosin ATPase activity to mitigate cardiac hypercontractility. This therapeutic mechanism has proven effective for patients with HCM independent of having a primary gene mutation in myosin. In this issue of the JCI, Buvoli et al. report that muscle hypercontractility is a mechanism of pathogenesis underlying muscle dysfunction in Laing distal myopathy, a disorder characterized by mutations altering the rod domain of ß myosin heavy chain. The authors performed detailed physiological, molecular, and biomechanical analyses and demonstrated that myosin ATPase inhibition can correct a large extent of muscle abnormalities. The findings offer a therapeutic avenue for Laing distal myopathy and potentially other myopathies. This Commentary underscores the importance of reevaluating myosin activity's role across myopathies in general for the potential development of targeted myosin inhibitors to treat skeletal muscle disorders.


Assuntos
Benzilaminas , Músculo Esquelético , Uracila/análogos & derivados , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miopatias Distais/genética , Miopatias Distais/tratamento farmacológico , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Animais , Mutação , Miosinas/metabolismo , Miosinas/genética
15.
Science ; 384(6695): 557-563, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696573

RESUMO

Hydrogels are an attractive category of biointerfacing materials with adjustable mechanical properties, diverse biochemical functions, and good ionic conductivity. Despite these advantages, their application in electronics has been restricted because of their lack of semiconducting properties, and they have traditionally only served as insulators or conductors. We developed single- and multiple-network hydrogels based on a water-soluble n-type semiconducting polymer, endowing conventional hydrogels with semiconducting capabilities. These hydrogels show good electron mobilities and high on/off ratios, enabling the fabrication of complementary logic circuits and signal amplifiers with low power consumption and high gains. We demonstrate that hydrogel electronics with good bioadhesive and biocompatible interface can sense and amplify electrophysiological signals with enhanced signal-to-noise ratios.

16.
Ann Geriatr Med Res ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757260

RESUMO

Although neuropsychiatric manifestations are common in survivors of coronavirus disease 2019 (COVID-19), the pathophysiology is not yet elucidated. Here we describe the case of a geriatric inpatient who developed postCOVID depression with psychomotor retardation, anxiety, hopelessness, executive function problems, and suicidal ideations. The language problems and cognitive impairments coemerged with the motor problems. We propose a mechanism associated with problems in energy prediction and regulation in which the coronavirus infection, which causes neuroinflammation and viral activity in the nervous system, interferes with the reward pathway and sensory prediction process. Sigma-1 receptor agonists such as sertraline may regulate energy expenditure and, thus, be beneficial to the process. The treatment improvements in our patient included those in the autonomic nervous system, activity, and circadian rhythm.

17.
Genome Biol ; 25(1): 135, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783323

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Multiple identified mutations in nexilin (NEXN) have been suggested to be linked with severe DCM. However, the exact association between multiple mutations of Nexn and DCM remains unclear. Moreover, it is critical for the development of precise and effective therapeutics in treatments of DCM. RESULTS: In our study, Nexn global knockout mice and mice carrying human equivalent G645del mutation are studied using functional gene rescue assays. AAV-mediated gene delivery is conducted through systemic intravenous injections at the neonatal stage. Heart tissues are analyzed by immunoblots, and functions are assessed by echocardiography. Here, we identify functional components of Nexilin and demonstrate that exogenous introduction could rescue the cardiac function and extend the lifespan of Nexn knockout mouse models. Similar therapeutic effects are also obtained in G645del mice, providing a promising intervention for future clinical therapeutics. CONCLUSIONS: In summary, we demonstrated that a single injection of AAV-Nexn was capable to restore the functions of cardiomyocytes and extended the lifespan of Nexn knockout and G645del mice. Our study represented a long-term gene replacement therapy for DCM that potentially covers all forms of loss-of-function mutations in NEXN.


Assuntos
Cardiomiopatia Dilatada , Terapia Genética , Camundongos Knockout , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/terapia , Camundongos , Humanos , Dependovirus/genética , Miócitos Cardíacos/metabolismo , Modelos Animais de Doenças , Mutação , Vetores Genéticos/administração & dosagem , Técnicas de Transferência de Genes
18.
New Phytol ; 243(1): 381-397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38741469

RESUMO

Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.


Assuntos
Proteínas Fúngicas , Laccaria , Micorrizas , NADPH Oxidases , Espécies Reativas de Oxigênio , Simbiose , Laccaria/fisiologia , Laccaria/genética , Laccaria/metabolismo , Micorrizas/fisiologia , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Fosforilação , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética
19.
Biomed Pharmacother ; 175: 116646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692058

RESUMO

The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.


Assuntos
Complexo de Golgi , Doenças Neurodegenerativas , Humanos , Complexo de Golgi/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Transdução de Sinais , Autofagia/fisiologia , Estresse Fisiológico/fisiologia
20.
Antioxidants (Basel) ; 13(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790643

RESUMO

Previous studies showed that NaIO3 can induce oxidative stress-mediated retinal pigment epithelium (RPE) damage to simulate age-related macular degeneration (AMD). Lemon peel is rich in antioxidants and components that can penetrate the blood-retinal barrier, but their role in retinal oxidative damage remains unexplored. Here, we explore the protection of lemon peel ultrasonic-assisted water extract (LUWE), containing large amounts of flavonoids and polyphenols, against NaIO3-induced retinal degeneration. We initially demonstrated that LUWE, orally administered, prevented retinal distortion and thinning on the inner and outer nuclei layers, downregulating cleaved caspase-3 protein expression in RPE cells in NaIO3-induced mice. The effect of LUWE was achieved through the suppression of apoptosis and the associated proteins, such as cleaved PARP and cleaved caspase-3, as suggested by NaIO3-induced ARPE-19 cell models. This is because LUWE reduced reactive oxygen species-mediated mitochondrial fission via regulating p-Drp-1 and Fis1 expression. We further confirmed that LUWE suppresses the expression of p-MEK-1/2 and p-ERK-1/2 in NaIO3-induced ARPE-19 cells, thereby providing the protection described above, which was confirmed using PD98059 and U0126. These results indicated that LUWE prevents mitochondrial oxidative stress-mediated RPE damage via the MEK/ERK pathway. Elucidation of the molecular mechanism may provide a new protective strategy against retinal degeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...