RESUMO
Avocado-derived polyhydroxylated fatty alcohols (PFAs), such as avocadene and avocadyne, have been recently identified as potent modulators of mitochondrial metabolism which selectively induce leukemia cell death and reverse pathologies associated with diet-induced obesity. However, avocadene and avocadyne bioaccessibility from avocado pulp is not reported; hence, this study aims to investigate if these PFAs are bioaccessible. Dynamic (TNO dynamic intestinal model-1 (TIM-1)) and static in vitro digestion of lyophilized Hass avocado pulp powder shows lipolytic gastrointestinal enzymes led to appreciable bioaccessibility of avocadene (55%) and avocadyne (50%). Furthermore, TIM-1 digestion of a 1:1 ratio of pure avocadene and avocadyne (avocatin B or AvoB) crystals formulated in an oil-in-water microemulsion has on average 15% higher bioaccessibility than the avocado pulp powder demonstrating both dosage forms as potential dietary sources of avocado PFAs. This research provides the impetus for further research on the nutritional significance of dietary long chain fatty alcohols.
Assuntos
Digestão , Álcoois Graxos , Persea , Persea/química , Persea/metabolismo , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Humanos , Disponibilidade Biológica , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Modelos Biológicos , Frutas/química , Frutas/metabolismoRESUMO
Protein cavities often rely on the paramagnetic metal present in their active site in order to catalyse various chemical transformations in biology. The selective detection and identification of the substrate is of fundamental importance in environmental monitoring and biological studies. Herein, a covalently linked Fe(iii)porphyrin dimer-based paramagnetic sensory cavity has been devised for the accurate detection and simultaneous identification of phenol (substrate) binding within the cavity that provides a unique spectroscopic signature with valuable structural and environmental information. These substrates within the paramagnetic cavity leave the fingerprints of the specific binding modes (exo vs. endo) which are well distinguished with the help of various spectroscopic studies viz. UV-vis, 1H, and 19F NMR and in their respective crystal structures also. The theoretical 19F NMR analysis plays a pivotal role in replicating the observed NMR trends with large chemical shifts of the phenolato species which in turn helps in deciphering the selective binding modes of the phenols and thereby recognizing the chemical environment within the cavity. These findings will help develop an excellent diagnostic tool for in situ monitoring of subtle conformational changes and transient interactions.
RESUMO
BACKGROUND: Workplace violence is a serious safety hazard in the healthcare sector and has attracted much attention worldwide, especially for nursing staff. Equipping nursing personnel with protective capabilities for workplace violence can reduce the risk they face in work settings. This study explored scenarios of common violent patient-nurse conflicts in the workplace of hospital nursing staff and their capabilities for de-escalating such conflicts. METHODS: We used a qualitative content analysis for this study. Qualitative interviews were conducted with 21 nurses in two teaching hospitals in New Taipei City, Taiwan, until data saturation was reached. The data were transcribed, encoded, and analyzed and similar concepts were grouped under the same category. RESULTS: Four categories of workplace violence scenarios common to hospital nursing staff were identified: unreasonable requests, caring for high-risk patients, long waiting times for medical consultation, and close contact when caring for patients. Two protective capabilities were recognized: communication and interpersonal capabilities and problem-solving skills. Each scenario may require a different combination of abilities. CONCLUSION: Our findings suggest that a violence-prevention training program could be designed for various workplace violence scenarios to enhance nurses' abilities to de-escalate workplace violence in hospitals.
RESUMO
Cryogenic ion vibrational predissociation (CIVP) spectroscopy is an established and valuable technique for molecular elucidation in the gas phase. CIVP relies on tunable lasers, wherein among typical laser schemes, the application of mid-infrared continuous-wave quantum cascade laser (cw-QCL) is the most robust and elegant solution, as we have recently demonstrated. However, potential challenges arise from an inhomogeneous character across laser power tuning curves. A large laser power output could have undesired consequences, such as multiphoton absorption or saturation effects. Significant variations in laser power tuning curves could potentially alter the shape of the investigated band, particularly for diffuse bands. In this study, we have developed and introduced an automatic variable laser power attenuator designed to keep the laser power output uniform at a user-defined value across the entire available spectral range. We demonstrated the application of this attenuator in obtaining CIVP spectra of a model compound with a diffuse N-H-N band. This approach enhances the reliability of measuring diffuse bands and overall applicability of cw-QCL.
RESUMO
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis. EVs accumulated 14 days after bleomycin challenge, correlating with decreased lung function and initiated fibrogenesis in healthy precision-cut lung slices. Label-free proteomics of bronchoalveolar lavage fluid EVs (BALF-EVs) collected from mice challenged with bleomycin or control identified 107 proteins enriched in fibrotic vesicles. Multiomic analysis revealed fibroblasts as a major cellular source of BALF-EV cargo, which was enriched in secreted frizzled related protein 1 (SFRP1). Sfrp1 deficiency inhibited the activity of fibroblast-derived EVs to potentiate lung fibrosis in vivo. SFRP1 led to increased transitional cell markers, such as keratin 8, and WNT/ß-catenin signaling in primary alveolar type 2 cells. SFRP1 was expressed within the IPF lung and localized at the surface of EVs from patient-derived fibroblasts and BALF. Our work reveals altered EV protein cargo in fibrotic EVs promoting fibrogenesis and identifies fibroblast-derived vesicular SFRP1 as a fibrotic mediator and potential therapeutic target for IPF.
Assuntos
Bleomicina , Líquido da Lavagem Broncoalveolar , Vesículas Extracelulares , Fibroblastos , Fibrose Pulmonar Idiopática , Animais , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Humanos , Masculino , Pulmão/patologia , Pulmão/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteômica/métodos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt , FemininoRESUMO
A leading cause of mortality after influenza infection is the development of a secondary bacterial pneumonia. In the absence of a bacterial superinfection, prescribing antibacterial therapies is not indicated but has become a common clinical practice for those presenting with a respiratory viral illness. In a murine model, we found that antibiotic use during influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics augment lung eosinophils, which have inhibitory effects on macrophage function through the release of major basic protein. Moreover, we demonstrated that antibiotic treatment during influenza infection caused a fungal dysbiosis that drove lung eosinophilia and impaired MRSA clearance. Finally, we evaluated 3 cohorts of hospitalized patients and found that eosinophils positively correlated with antibiotic use, systemic inflammation, and worsened outcomes. Altogether, our work demonstrates a detrimental effect of antibiotic treatment during influenza infection that has harmful immunologic consequences via recruitment of eosinophils to the lungs, thereby increasing the risk of developing a secondary bacterial infection.
Assuntos
Antibacterianos , Eosinófilos , Influenza Humana , Pulmão , Staphylococcus aureus Resistente à Meticilina , Infecções por Orthomyxoviridae , Animais , Camundongos , Eosinófilos/imunologia , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Pulmão/imunologia , Pulmão/patologia , Influenza Humana/imunologia , Influenza Humana/tratamento farmacológico , Feminino , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Masculino , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Estafilocócica/imunologia , Pneumonia Estafilocócica/tratamento farmacológicoRESUMO
The long-term physiological consequences of respiratory viral infections, particularly in the aftermath of the COVID-19 pandemic-termed post-acute sequelae of SARS-CoV-2 (PASC)-are rapidly evolving into a major public health concern1-3. While the cellular and molecular aetiologies of these sequelae are poorly defined, increasing evidence implicates abnormal immune responses3-6 and/or impaired organ recovery7-9 after infection. However, the precise mechanisms that link these processes in the context of PASC remain unclear. Here, with insights from three cohorts of patients with respiratory PASC, we established a mouse model of post-viral lung disease and identified an aberrant immune-epithelial progenitor niche unique to fibroproliferation in respiratory PASC. Using spatial transcriptomics and imaging, we found a central role for lung-resident CD8+ T cell-macrophage interactions in impairing alveolar regeneration and driving fibrotic sequelae after acute viral pneumonia. Specifically, IFNγ and TNF derived from CD8+ T cells stimulated local macrophages to chronically release IL-1ß, resulting in the long-term maintenance of dysplastic epithelial progenitors and lung fibrosis. Notably, therapeutic neutralization of IFNγ + TNF or IL-1ß markedly improved alveolar regeneration and pulmonary function. In contrast to other approaches, which require early intervention10, we highlight therapeutic strategies to rescue fibrotic disease after the resolution of acute disease, addressing a current unmet need in the clinical management of PASC and post-viral disease.
Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Modelos Animais de Doenças , Pulmão , Macrófagos , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Feminino , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Síndrome de COVID-19 Pós-Aguda , Interleucina-1beta/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Nicho de Células-Tronco , Células-Tronco/virologia , Células-Tronco/imunologia , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Fibrose Pulmonar/virologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/imunologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regeneração/imunologia , Alvéolos Pulmonares/virologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologiaRESUMO
BACKGROUND: There are currently no validated clinical biomarkers of postacute sequelae of SARS-CoV-2 infection (PASC). OBJECTIVE: To investigate clinical laboratory markers of SARS-CoV-2 and PASC. DESIGN: Propensity score-weighted linear regression models were fitted to evaluate differences in mean laboratory measures by prior infection and PASC index (≥12 vs. 0). (ClinicalTrials.gov: NCT05172024). SETTING: 83 enrolling sites. PARTICIPANTS: RECOVER-Adult cohort participants with or without SARS-CoV-2 infection with a study visit and laboratory measures 6 months after the index date (or at enrollment if >6 months after the index date). Participants were excluded if the 6-month visit occurred within 30 days of reinfection. MEASUREMENTS: Participants completed questionnaires and standard clinical laboratory tests. RESULTS: Among 10 094 participants, 8746 had prior SARS-CoV-2 infection, 1348 were uninfected, 1880 had a PASC index of 12 or higher, and 3351 had a PASC index of zero. After propensity score adjustment, participants with prior infection had a lower mean platelet count (265.9 × 109 cells/L [95% CI, 264.5 to 267.4 × 109 cells/L]) than participants without known prior infection (275.2 × 109 cells/L [CI, 268.5 to 282.0 × 109 cells/L]), as well as higher mean hemoglobin A1c (HbA1c) level (5.58% [CI, 5.56% to 5.60%] vs. 5.46% [CI, 5.40% to 5.51%]) and urinary albumin-creatinine ratio (81.9 mg/g [CI, 67.5 to 96.2 mg/g] vs. 43.0 mg/g [CI, 25.4 to 60.6 mg/g]), although differences were of modest clinical significance. The difference in HbA1c levels was attenuated after participants with preexisting diabetes were excluded. Among participants with prior infection, no meaningful differences in mean laboratory values were found between those with a PASC index of 12 or higher and those with a PASC index of zero. LIMITATION: Whether differences in laboratory markers represent consequences of or risk factors for SARS-CoV-2 infection could not be determined. CONCLUSION: Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC. PRIMARY FUNDING SOURCE: National Institutes of Health.
Assuntos
Biomarcadores , COVID-19 , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Pontuação de Propensão , Idoso , Adulto , Hemoglobinas Glicadas/análise , Estudos de CoortesRESUMO
Three cyano-coordinated cobalt porphyrin dimers were synthesized and thoroughly characterized. The X-ray structure of the complexes reveals that cyanide binds in a terminal fashion in both the anti and trans isomers of ethane- and ethylene-bridged cobalt porphyrin dimers, while in the cis ethylene-bridged dimer, cyanides bind in both terminal and bridging modes. The nonconjugated ethane-bridged complex stabilizes exclusively a diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 both in the solid and in solution. In contrast, the complexes with the conjugated ethylene-bridge contain signatures of both paramagnetic ligand-centered oxidation of the type CoII(porâ¢+)(CN)2 and diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 with the metal-centered oxidized species being the major component in the solid state as observed in XPS, while the ligand-centered oxidized species are present in a significant amount in solution. 1H NMR spectrum in solution displays two set of signals corresponding to the simultaneous presence of both the diamagnetic and paramagnetic species. EPR and magnetic investigation reveal that there is a moderate ferromagnetic coupling between the unpaired electrons of the low-spin CoII center and the porphyrin π-cation radical in CoII(porâ¢+)(CN)2 species as well as an antiferromagnetic coupling between the two CoII(porâ¢+) units through the ethylene and CN bridges.
RESUMO
PURPOSE: Many countries have developed clinical decision-making support tools, such as the smart work injury management (SWIM) system in Hong Kong, to predict rehabilitation paths and address global issues related to work injury disability. This study aims to evaluate the accuracy of SWIM by comparing its predictions on real work injury cases to those made by human case managers, specifically with regard to the duration of sick leave and the percentage of permanent disability. METHODS: The study analyzed a total of 442 work injury cases covering the period from 2012 to 2020, dividing them into non-litigated and litigated cases. The Kruskal-Wallis post hoc test with Bonferroni adjustment was used to evaluate the differences between the actual data, the SWIM predictions, and the estimations made by three case managers. The intra-class correlation coefficient was used to assess the inter-rater reliability of the case managers. RESULTS: The study discovered that the predictions made by the SWIM model and a case manager possessing approximately 4 years of experience in case management exhibited moderate reliability in non-litigated cases. Nevertheless, there was no resemblance between SWIM's predictions regarding the percentage of permanent disability and those made by case managers. CONCLUSION: The findings indicate that SWIM is capable of replicating the sick leave estimations made by a case manager with an estimated 4 years of case management experience, albeit with limitations in generalizability owing to the small sample size of case managers involved in the study. IMPLICATIONS: These findings represent a significant advancement in enhancing the accuracy of CDMS for work injury cases in Hong Kong, signaling progress in the field.
RESUMO
Over the past few years, monocular depth estimation and completion have been paid more and more attention from the computer vision community because of their widespread applications. In this paper, we introduce novel physics (geometry)-driven deep learning frameworks for these two tasks by assuming that 3D scenes are constituted with piece-wise planes. Instead of directly estimating the depth map or completing the sparse depth map, we propose to estimate the surface normal and plane-to-origin distance maps or complete the sparse surface normal and distance maps as intermediate outputs. To this end, we develop a normal-distance head that outputs pixel-level surface normal and distance. Afterthat, the surface normal and distance maps are regularized by a developed plane-aware consistency constraint, which are then transformed into depth maps. Furthermore, we integrate an additional depth head to strengthen the robustness of the proposed frameworks. Extensive experiments on the NYU-Depth-v2, KITTI and SUN RGB-D datasets demonstrate that our method exceeds in performance prior state-of-the-art monocular depth estimation and completion competitors.
RESUMO
BACKGROUND: Serial measurement of virological and immunological biomarkers in patients admitted to hospital with COVID-19 can give valuable insight into the pathogenic roles of viral replication and immune dysregulation. We aimed to characterise biomarker trajectories and their associations with clinical outcomes. METHODS: In this international, prospective cohort study, patients admitted to hospital with COVID-19 and enrolled in the Therapeutics for Inpatients with COVID-19 platform trial within the Accelerating COVID-19 Therapeutic Interventions and Vaccines programme between Aug 5, 2020 and Sept 30, 2021 were included. Participants were included from 108 sites in Denmark, Greece, Poland, Singapore, Spain, Switzerland, Uganda, the UK, and the USA, and randomised to placebo or one of four neutralising monoclonal antibodies: bamlanivimab (Aug 5 to Oct 13, 2020), sotrovimab (Dec 16, 2020, to March 1, 2021), amubarvimab-romlusevimab (Dec 16, 2020, to March 1, 2021), and tixagevimab-cilgavimab (Feb 10 to Sept 30, 2021). This trial included an analysis of 2149 participants with plasma nucleocapsid antigen, anti-nucleocapsid antibody, C-reactive protein (CRP), IL-6, and D-dimer measured at baseline and day 1, day 3, and day 5 of enrolment. Day-90 follow-up status was available for 1790 participants. Biomarker trajectories were evaluated for associations with baseline characteristics, a 7-day pulmonary ordinal outcome, 90-day mortality, and 90-day rate of sustained recovery. FINDINGS: The study included 2149 participants. Participant median age was 57 years (IQR 46-68), 1246 (58·0%) of 2149 participants were male and 903 (42·0%) were female; 1792 (83·4%) had at least one comorbidity, and 1764 (82·1%) were unvaccinated. Mortality to day 90 was 172 (8·0%) of 2149 and 189 (8·8%) participants had sustained recovery. A pattern of less favourable trajectories of low anti-nucleocapsid antibody, high plasma nucleocapsid antigen, and high inflammatory markers over the first 5 days was observed for high-risk baseline clinical characteristics or factors related to SARS-CoV-2 infection. For example, participants with chronic kidney disease demonstrated plasma nucleocapsid antigen 424% higher (95% CI 319-559), CRP 174% higher (150-202), IL-6 173% higher (144-208), D-dimer 149% higher (134-165), and anti-nucleocapsid antibody 39% lower (60-18) to day 5 than those without chronic kidney disease. Participants in the highest quartile for plasma nucleocapsid antigen, CRP, and IL-6 at baseline and day 5 had worse clinical outcomes, including 90-day all-cause mortality (plasma nucleocapsid antigen hazard ratio (HR) 4·50 (95% CI 3·29-6·15), CRP HR 3·37 (2·30-4·94), and IL-6 HR 5·67 (4·12-7·80). This risk persisted for plasma nucleocapsid antigen and CRP after adjustment for baseline biomarker values and other baseline factors. INTERPRETATION: Patients admitted to hospital with less favourable 5-day biomarker trajectories had worse prognosis, suggesting that persistent viral burden might drive inflammation in the pathogenesis of COVID-19, identifying patients that might benefit from escalation of antiviral or anti-inflammatory treatment. FUNDING: US National Institutes of Health.
Assuntos
Biomarcadores , COVID-19 , Hospitalização , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/sangue , Estudos Prospectivos , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Idoso , Hospitalização/estatística & dados numéricos , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Anticorpos Monoclonais Humanizados/uso terapêutico , Interleucina-6/sangue , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Pandemias , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/sangue , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/sangue , Pneumonia Viral/mortalidade , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Resultado do TratamentoRESUMO
Conditional protein degradation tags (degrons) are usually >100 amino acids long or are triggered by small molecules with substantial off-target effects, thwarting their use as specific modulators of endogenous protein levels. We developed a phage-assisted continuous evolution platform for molecular glue complexes (MG-PACE) and evolved a 36-amino acid zinc finger (ZF) degron (SD40) that binds the ubiquitin ligase substrate receptor cereblon in complex with PT-179, an orthogonal thalidomide derivative. Endogenous proteins tagged in-frame with SD40 using prime editing are degraded by otherwise inert PT-179. Cryo-electron microscopy structures of SD40 in complex with ligand-bound cereblon revealed mechanistic insights into the molecular basis of SD40's activity and specificity. Our efforts establish a system for continuous evolution of molecular glue complexes and provide ZF tags that overcome shortcomings associated with existing degrons.
Assuntos
Degrons , Evolução Molecular Direcionada , Proteólise , Ubiquitina-Proteína Ligases , Dedos de Zinco , Microscopia Crioeletrônica , Talidomida/química , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Degrons/genética , Dedos de Zinco/genética , Quimera de Direcionamento de Proteólise , Evolução Molecular Direcionada/métodos , HumanosRESUMO
This case report discusses posterior segment characteristics in a patient aged 24 years with low vision and a history of Gaucher disease.
Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/diagnóstico , Doença de Gaucher/tratamento farmacológicoRESUMO
Using transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.
RESUMO
Neuromodulators transform animal behaviors. Recent research has demonstrated the importance of both sustained and transient change in neuromodulators, likely due to tonic and phasic neuromodulator release. However, no method could simultaneously record both types of dynamics. Fluorescence lifetime of optical reporters could offer a solution because it allows high temporal resolution and is impervious to sensor expression differences across chronic periods. Nevertheless, no fluorescence lifetime change across the entire classes of neuromodulator sensors was previously known. Unexpectedly, we find that several intensity-based neuromodulator sensors also exhibit fluorescence lifetime responses. Furthermore, we show that lifetime measures in vivo neuromodulator dynamics both with high temporal resolution and with consistency across animals and time. Thus, we report a method that can simultaneously measure neuromodulator change over transient and chronic time scales, promising to reveal the roles of multi-time scale neuromodulator dynamics in diseases, in response to therapies, and across development and aging.