Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small Methods ; : e2400084, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738733

RESUMO

Doping plays a crucial role in modulating and enhancing the performance of organic semiconductor (OSC) devices. In this study, the critical role of dopants is underscored in shaping the morphology and structure of OSC films, which in turn profoundly influences their properties. Two dopants, trityl tetrakis(pentafluorophenyl) (TrTPFB) and N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (DMA-TPFB), are examined for their doping effects on poly(3-hexylthiophene) (P3HT) and PBBT-2T host OSCs. It is found that although TrTPFB exhibits higher doping efficiency, OSCs doped with DMA-TPFB achieve comparable or even enhanced electrical conductivity. Indeed, the electrical conductivity of DMA-TPFB-doped P3HT reaches over 67 S cm-1, which is a record-high value for mixed-solution-doped P3HT. This can be attributed to DMA-TPFB inducing a higher degree of crystallinity and reduced structural disorder. Moreover, the beneficial impact of DMA-TPFB on the OSC films' morphology and structure results in superior thermoelectric performance in the doped OSCs. These findings highlight the significance of dopant-induced morphological and structural considerations in enhancing the film characteristics of OSCs, opening up a new avenue for optimization of dopant performance.

2.
Nano Lett ; 24(22): 6673-6682, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779991

RESUMO

Reliably discerning real human faces from fake ones, known as antispoofing, is crucial for facial recognition systems. While neuromorphic systems offer integrated sensing-memory-processing functions, they still struggle with efficient antispoofing techniques. Here we introduce a neuromorphic facial recognition system incorporating multidimensional deep ultraviolet (DUV) optoelectronic synapses to address these challenges. To overcome the complexity and high cost of producing DUV synapses using traditional wide-bandgap semiconductors, we developed a low-temperature (≤70 °C) solution process for fabricating DUV synapses based on PEA2PbBr4/C8-BTBT heterojunction field-effect transistors. This method enables the large-scale (4-in.), uniform, and transparent production of DUV synapses. These devices respond to both DUV and visible light, showing multidimensional features. Leveraging the unique ability of the multidimensional DUV synapse (MDUVS) to discriminate real human skin from artificial materials, we have achieved robust neuromorphic facial recognition with antispoofing capability, successfully identifying genuine human faces with an accuracy exceeding 92%.

3.
Sci Total Environ ; 937: 173404, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797419

RESUMO

Rapid detection of airborne pathogens is crucial in preventing respiratory infections and allergies. However, technologies aiming to real-time analysis of microorganisms in air remain limited due to the sparse and complex nature of bioaerosols. Here, we introduced an online bioaerosol monitoring system (OBMS) comprised of integrated units including a rotatable stainless-steel sintered filter-based sampler, a lysis unit for extracting adenosine triphosphate (ATP), and a single photon detector-based fluorescence unit. Through optimization of the ATP bioluminescence method and establishment of standard curves between relative luminescence units (RLUs) and ATP as well as microbial concentration, we achieved simultaneous detection of bioaerosols' concentration and activity. Testing OBMS with four bacterial and two fungal aerosols at a sampling flow rate of 10 to 50 L/min revealed an outstanding collection efficiency of 95 % at 30 L/min. A single OBMS measurement takes only 8 min (sampling: 5 min; lysis and detection: 3 min) with detection limits of 3 Pcs/ms photons (2.9 × 103 and 292 CFU/m3 for Staphylococcus aureus and Candida albicans aerosol). In both laboratory and field tests, OBMS detected higher concentrations of bioaerosol compared to the traditional Andersen impactor and liquid biosampler. When combined OBMS with loop-mediated isothermal amplification (LAMP), the bioaerosol can be qualitative and quantitative analyzed within 40 min without the cumbersome procedures of sample pretreatment and DNA extraction. These results offer a high compressive and humidity resistance membrane filtration sampler and validate the potential of OBMS for online measurement of bioaerosol concentration and composition.


Assuntos
Trifosfato de Adenosina , Aerossóis , Microbiologia do Ar , Monitoramento Ambiental , Medições Luminescentes , Técnicas de Amplificação de Ácido Nucleico , Aerossóis/análise , Trifosfato de Adenosina/análise , Monitoramento Ambiental/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Medições Luminescentes/métodos , Técnicas de Diagnóstico Molecular
4.
Protein Pept Lett ; 31(1): 25-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38155464

RESUMO

Protein arginine methylation stands as a prevalent post-translational modification process, exerting vital roles in cellular signal transduction, gene expression, and cell cycle regulation. Amidst the protein arginine methyltransferase (PRMT) family, PRMT2 stands as a less explored constituent. Nonetheless, its regulatory roles in transcriptional regulation, post-transcriptional modification, methylation activity regulation, immunoregulation, and developmental regulation have garnered attention. These capabilities enable PRMT2 to exert pivotal regulatory functions in certain malignancies, metabolic disorders, inflammatory diseases, and atherosclerosis. In this review, we highlight the structure and functions of PRMT2, emphasizing its association with diseases. We also discuss PRMT2 inhibitors and explore the potential for therapeutic targeting.


Assuntos
Regulação da Expressão Gênica , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/genética , Metilação , Processamento de Proteína Pós-Traducional , Arginina
5.
ACS Appl Mater Interfaces ; 15(51): 59895-59904, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38102992

RESUMO

Microwave-absorbing materials adapting to high temperatures and harsh environments are in great demand. Herein, a core-shelled Ti3AlC2@La2Zr2O7 (TAC@LZO) composite was designed and fabricated by encapsulating the La2Zr2O7 (LZO) thermal insulation ceramic on the surface of highly conductive Ti3AlC2 (TAC) via chemical coprecipitation and subsequent heat treatment. The continuous LZO ceramic coating on the surface improved the oxidation resistance of the composite at 600 °C and modulated its dielectric properties. The TAC@LZO composite exhibited an excellent microwave absorption performance within the temperature range of 25-600 °C, minimum reflection loss (RLmin) < -55 dB, and effective absorption bandwidth (EAB, RL < -10 dB) of 4 GHz. This work presents an effective approach for developing stable high-temperature microwave absorbers from thermal insulation ceramics.

6.
Adv Mater ; 35(44): e2305648, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603829

RESUMO

Solution-processed metal halide perovskites hold immense potential for the advancement of next-generation field-effect transistors (FETs). However, the instability of perovskite-based transistors has impeded their progress and practical applications. Here, ambient-stable high-performance FETs based on 2D Dion-Jacobson phase tin halide perovskite BDASnI4 , which has high film quality and excellent electrical properties, are reported. The perovskite channels are established by engineering the film crystallization process via the employment of ammonium salt interlayers and the incorporation of NH4 SCN additives within the precursor solution. The refined FETs demonstrate field-effect hole mobilities up to 1.61 cm2 V-1 s-1 and an on/off ratio surpassing 106 . Moreover, the devices show impressive operational and environmental stability and retain their functional performance even after being exposed to ambient conditions with a temperature of 45 °C and humidity of 45% for over 150 h.

7.
STAR Protoc ; 4(2): 102235, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37130033

RESUMO

Two-dimensional (2D) lead halide perovskites (LHPs) are highly attractive for fabricating thin-film transistors (TFTs), but it remains a challenge for 2D LHP TFTs to work at room temperature (RT). Here, we present a protocol for fabricating 2D LHP TFTs that operate well at RT and exhibit high bias-stress stability and storage stability. We describe steps for preparing materials and equipment followed by fabrication of devices. We then detail measurement of device output characteristics and extraction of performance parameters. For complete details on the use and execution of this protocol, please refer to Qiu et al. (2023).1.

8.
Adv Mater ; 35(22): e2300084, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929089

RESUMO

Doping is a powerful technique for engineering the electrical properties of organic semiconductors (OSCs), yet efficient n-doping of OSCs remains a central challenge. Herein, the discovery of two organic superbase dopants, namely P2-t-Bu and P4-t-Bu as ultra-efficient n-dopants for OSCs is reported. Typical n-type semiconductors such as N2200 and PC61 BM are shown to experience a significant increase of conductivity upon doping by the two dopants. In particular, the optimized electrical conductivity of P2-t-Bu-doped PC61 BM reaches a record-high value of 2.64 S cm-1 . The polaron generation efficiency of P2-t-Bu-doped in PC61 BM is found to be over 35%, which is 2-3 times higher than that of benchmark n-dopant N-DMBI. In addition, a deprotonation-initiated, nucleophilic-attack-based n-doping mechanism is proposed for the organic superbases, which involves the deprotonation of OSC molecules, the nucleophilic attack of the resulting carbanions on the OSC's π-bonds, and the subsequent n-doping through single electron transfer process between the anionized and neutral OSCs. This work highlights organic superbases as promising n-dopants for OSCs and opens up opportunities to explore and develop highly efficient n-dopants.

9.
Small ; 19(27): e2207858, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36949014

RESUMO

Electrodes are indispensable components in semiconductor devices, and now are mainly made from metals, which are convenient for use but not ideal for emerging technologies such as bioelectronics, flexible electronics, or transparent electronics. Here the methodology of fabricating novel electrodes for semiconductor devices using organic semiconductors (OSCs) is proposed and demonstrated. It is shown that polymer semiconductors can be heavily p- or n-doped to achieve sufficiently high conductivity for electrodes. In contrast with metals, the doped OSC films (DOSCFs) are solution-processable, mechanically flexible, and have interesting optoelectronic properties. By integrating the DOSCFs with semiconductors through van der Waals contacts different kinds of semiconductor devices can be constructed. Importantly, these devices exhibit higher performance than their counterparts with metal electrodes, and/or excellent mechanical or optical properties that are unavailable in metal-electrode devices, suggesting the superiority of DOSCF electrodes. Given the existing large amount of OSCs, the established methodology can provide abundant electrode choices to meet the demand of various emerging devices.

10.
Adv Sci (Weinh) ; 10(10): e2300133, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703612

RESUMO

Transparent field-effect transistors (FETs) are attacking intensive interest for constructing fancy "invisible" electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide-bandgap but generally demand sputtering technique or high-temperature (>350 °C) solution process for fabrication. Herein, a general device fabrication strategy for metal halide perovskite (MHP) FETs is shown, by which transparent perovskite FETs are successfully obtained using low-temperature (<150 °C) solution process. This strategy involves the employment of ferroelectric copolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) as the dielectric, which conquers the challenging issue of gate-electric-field screening effect in MHP FETs. Additionally, an ultra-thin SnO2 is inserted between the source/drain electrodes and MHPs to facilitate electron injection. Consequently, n-type semi-transparent MAPbBr3 FETs and fully transparent MAPbCl3 FETs which can operate well at room temperature with mobility over 10-3  cm2  V-1  s-1 and on/off ratio >103 are achieved for the first time. The low-temperature solution processability of these FETs makes them particularly attractive for applications in low-cost, large-area transparent electronics.

11.
Angew Chem Int Ed Engl ; 62(5): e202214653, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36470852

RESUMO

Lateral furan-expansion of polycyclic aromatics, which enables multiple O-doping and peripheral edge evolution of rylenes, is developed for the first time. Tetrafuranylperylene TPF-4CN and octafuranylquaterrylene OFQ-8CN were prepared as model compounds bearing unique fjord edge topology and helical conformations. Compared to TPF-4CN, the higher congener OFQ-8CN displays a largely red-shifted (≈333 nm) and intensified absorption band (λmax =829 nm) as well as a narrowed electrochemical band gap (≈1.08 eV) due to its pronounced π-delocalization and emerging of open-shell diradicaloid upon the increase of fjord edge length. Moreover, strong circular dichroism signals in a broad range until 900 nm are observed for open-shell chiral OFQ-8CN, owing to the excellent conformational stability of its central bis(tetraoxa[5]helicene) fragments. Our studies provide insights into the relationships between edge topologies and (chir)optoelectronic properties for this novel type of O-doped PAHs.

12.
Materials (Basel) ; 15(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431447

RESUMO

In order to reduce the sintering temperature and improve the mechanical properties of B4C ceramics, ZrB2 was formed in situ using the SPS sintering method with ZrO2 and B4C as raw materials. Thermodynamic calculations revealed that CO pressure affected the formation of ZrB2 at temperatures from 814 °C to 1100 °C. The experimental results showed that the ZrB2 grain size was <5 µm and that the grains were uniformly distributed within the B4C ceramics. With an increase in ZrO2 content, the Vickers hardness and flexural strength of the B4C ceramics first increased and then decreased, while the fracture toughness continuously increased. When the content of ZrO2 was 15 wt%, the Vickers hardness, fracture toughness and flexural strength of B4C ceramics were 35.5 ± 0.63 GPa, 3.6 ± 0.24 MPa·m1/2 and 403 ± 10 MPa, respectively. These results suggest that ZrB2 inhibits B4C grain growth, eliminates crack tip stress, and provides fine grain to strengthen and toughen B4C ceramics.

13.
Adv Sci (Weinh) ; 9(32): e2203111, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36089649

RESUMO

Doping is of great importance to tailor the electrical properties of semiconductors. However, the present doping methodologies for organic semiconductors (OSCs) are either inefficient or can only apply to some OSCs conditionally, seriously limiting their general applications. Herein, a novel p-doping mechanism is revealed by investigating the interactions between the dopant trityl tetrakis(pentafluorophenyl) borate (TrTPFB) and poly(3-hexylthiophene) (P3HT). It is found that electrophilic attack of the trityl cations on thiophenes results in the formation of tritylated thiophenium ions, which subsequently induce electron transfer from neighboring P3HT chains to realize p-doping. This unique p-doping mechanism enables TrTPFB to p-dope various OSCs including those with high ionization energy (IE ≈ 5.8 eV). Moreover, this doping mechanism endows TrTPFB with strong doping capability, leading to doping efficiency of over 80% in P3HT. The discovery and elucidation of this novel doping mechanism not only points out that strong electrophiles are a class of efficient p-dopants for OSCs, but also provides new opportunities toward highly efficient doping of various OSCs.

14.
Microbiol Spectr ; 10(5): e0218322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135378

RESUMO

Krüppel-like factor 5 (KLF5) is critical in maintaining intestinal barrier function, and renal denervation (RDN) mitigates gut microbiota aberrations in rats with heart failure (HF). It is unclear whether intestinal KLF5 can be regulated by RDN and whether inhibiting intestinal KLF5 weakens the beneficial role of RDN on gut microbiota. Sprague-Dawley rats were distributed into a CG (sham transverse aortic constriction [TAC] and sham RDN), HF (induced by TAC), or RDN (underwent RDN after TAC) group or a CG.M, HF.M, or RDN.M group, which included the administration of the KLF5 inhibitor to the CG, HF, or RDN group, respectively. Transmission electron microscopy, mRNA, and protein expression of KLF5 and desmoglein 2 (DSG2) in jejunum and sequencing of the 16S rRNA gene in fecal samples were evaluated. KLF5 expression was lower in the RDN group than in the HF group (P < 0.001). The microvillus length, density, length-to-width ratio, and DSG2 expression were lower in the RDN.M group than in the RDN group, and the same trend was observed between the HF.M and HF groups (all P < 0.05). The gut bacterial community structure was altered after administration of a KLF5 inhibitor. The abundances of Proteobacteria, Gammaproteobacteria, Sutterella, and Prevotellaceae were higher, and the abundance of Firmicutes was lower in the RDN.M group than in the RDN group (all P < 0.05). These findings indicated that RDN suppressed intestinal KLF5 expression, and inhibiting intestinal KLF5 expression exacerbated the gut microbiota by impairing the intestinal barrier function in HF rats following RDN, which weakened the beneficial role of RDN on gut microbiota. IMPORTANCE Krüppel-like factor 5 (KLF5) is critical for the maintenance of intestinal barrier function. It is unclear whether intestinal KLF5 expression can be affected by renal denervation (RDN) in heart failure (HF) and whether inhibiting intestinal KLF5 expression exacerbates the gut microbiome and weakens the role of RDN in mitigating gut microbiome aberrations in HF rats after RDN. We demonstrated that RDN significantly suppressed intestinal KLF5 expression and that inhibiting intestinal expression of KLF5 exacerbated the gut microbiota and weakened the role of RDN in mitigating microbiota aberrations by impairing intestinal barrier function, resulting in an increase in bacteria harmful to cardiac function and a decrease in beneficial bacteria in HF rats following RDN. This study highlighted the important roles of intestinal KLF5 in modulating gut microbiota in HF and suggested that the influence of RDN on intestinal KLF5 was another possible role of RDN in HF besides downregulating the sympathetic nerve.


Assuntos
Microbioma Gastrointestinal , Insuficiência Cardíaca , Animais , Ratos , Denervação , Desmogleína 2 , Fatores de Transcrição Kruppel-Like/genética , Ratos Sprague-Dawley , RNA Mensageiro , RNA Ribossômico 16S
15.
BMJ Open ; 12(6): e055871, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768115

RESUMO

OBJECTIVE: Intracoronary ECG (IC-ECG) recording has been shown to be sensitive and reliable for detecting myocardial viability and local myocardial ischaemia in some studies. But IC-ECG is neither widely used during percutaneous coronary intervention (PCI) nor recommended in guidelines. This up-to-date meta-analysis of published studies was conducted to evaluate the prognostic and diagnostic accuracy of IC-ECG recorded during PCI. METHODS: Relevant studies were identified by searches of MEDLINE until 19 June 2021. Observational and diagnostic studies which reported the prognostic or diagnostic accuracy of IC-ECG were included. Data were extracted independently by two authors. Summary estimates of clinical outcomes were obtained using a random effects model. Summary diagnostic accuracy was obtained by using a Bayesian bivariate random effects model. RESULTS: Of the 12 included studies, 7 studies reported the clinical outcomes (821 patients) and 6 studies reported the diagnostic accuracy (485 patients) of IC-ECG. The pooled ORs with 95% CIs of ST-segment elevation recorded by IC-ECG were 4.65 (1.69 to 12.77), 5.08 (1.10 to 23.44), 4.53 (0.79 to 25.90) and 1.83 (0.93 to 3.62) for major adverse cardiac events, myocardial infarction, cardiac death and revascularisation, respectively. The weighted mean difference were 6.49 (95% CIs 3.84 to 9.14) for ejection fraction when ST-segment resolution was recorded, and 0.86 (95% CIs -8.55 to 10.26) when ST-segment elevation was recorded. The pooled sensitivity and specificity of ST-segment elevation were 0.78 (95% credibility intervals 0.64 to 0.89) and 0.87 (95% credibility intervals 0.75 to 0.94), respectively. CONCLUSIONS: These findings provide quantitative data supporting that IC-ECG had promising diagnostic ability for local myocardial injury, and could predict clinical outcomes.


Assuntos
Intervenção Coronária Percutânea , Teorema de Bayes , Eletrocardiografia , Humanos , Prognóstico , Resultado do Tratamento
16.
Drug Deliv ; 29(1): 1675-1683, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35616277

RESUMO

Biofilm formation is known to promote drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), which is closely related to persistent infections in hospital settings. In this study, a DNA aptamer specific to penicillin-binding protein 2a (PBP2a) with a dissociation constant (Kd) of 82.97 ± 8.86 nM was obtained after 14 cycles of systematic evolution of ligands by exponential enrichment (SELEX). Next, a bifunctional complex containing the aptamer intercalated by berberine into the double-strand region was prepared and adsorbed onto the surface of graphene oxide (GO) by π-stacking interactions. The GO-loaded aptamer/berberine bifunctional complex showed significantly higher inhibition of MRSA biofilm formation than the control. Furthermore, this study shows that the complex possesses anti-biofilm activity, which can be attributed to the ability of the aptamer to reduce cell-surface attachment by blocking the function of PBP2a and berberine to attenuate the level of the accessory gene regulator (agr) system, which plays an important role in mediating MRSA biofilm formation. Therefore, the simultaneous delivery of berberine and PBP2a-targted aptamer using GO may have potential for the treatment of chronic infections caused by MRSA biofilms. It also provides a new avenue for multitarget treatment of bacterial biofilms.


Assuntos
Berberina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/metabolismo , Berberina/farmacologia , Biofilmes , Grafite , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico
17.
iScience ; 25(4): 104109, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35402868

RESUMO

Doping is an important technique for semiconductor materials and devices, yet effective and controllable doping of organic-inorganic halide perovskites is still a challenge. Here, we demonstrate a facile way to dope two-dimensional Sn-based perovskite (PEA)2SnI4 by incorporating SnI4 in the precursor solutions. It is observed that Sn4+ produces p-doping effect on the perovskite, which increases the electrical conductivity by 105 times. The dopant SnI4 is also found to improve the film morphology of (PEA)2SnI4, leading to reduced trap states. This doping technique allows us to improve the room temperature mobility of (PEA)2SnI4 field-effect transistors from 0.25 to 0.68 cm2 V-1 s-1 thanks to reduced trapping effects in the doped devices. Moreover, the doping technique enables the characterization and improvement of the thermoelectric performance of (PEA)2SnI4 films, which show a high power factor of 3.92 µW m-1 K-2 at doping ratio of 5 mol %.

18.
Adv Sci (Weinh) ; 9(12): e2105856, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35229493

RESUMO

Planar heterojunctions (PHJs) are fundamental building blocks for construction of semiconductor devices. However, fabricating PHJs with solution-processable semiconductors such as organic semiconductors (OSCs) is a challenge. Herein, utilizing the orthogonal solubility and good wettability between CsPbBr3 perovskite quantum dots (PQDs) and OSCs, fabrication of solution-processed PQD/OSC PHJs are reported. The phototransistors based on bilayer PQD/PDVT-10 PHJs show responsivity up to 1.64 × 104 A W-1 , specific detectivity of 3.17 × 1012 Jones, and photosensitivity of 5.33 × 106 when illuminated by 450 nm light. Such high photodetection performance is attributed to efficient charge dissociation and transport, as well as the photogating effect in the PHJs. Furthermore, the tri-layer PDVT-10/PQD/Y6 PHJs are used to construct photodiodes working in self-powered mode, which exhibit broad range photoresponse from ultraviolet to near-infrared, with responsivity approaching 10-1 A W-1 and detectivity over 106 Jones. These results present a convenient and scalable production processes for solution-processed PHJs and show their great potential for optoelectronic applications.

19.
Front Optoelectron ; 15(1): 26, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36637568

RESUMO

The recently reported non-fullerene acceptor (NFA) Y6 has been extensively investigated for high-performance organic solar cells. However, its charge transport property and physics have not been fully studied. In this work, we acquired a deeper understanding of the charge transport in Y6 by fabricating and characterizing thin-film transistors (TFTs), and found that the electron mobility of Y6 is over 0.3-0.4 cm2/(V⋅s) in top-gate bottom-contact devices, which is at least one order of magnitude higher than that of another well-known NFA ITIC. More importantly, we observed band-like transport in Y6 spin-coated films through temperature-dependent measurements on TFTs. This is particularly amazing since such transport behavior is rarely seen in polycrystalline organic semiconductor films. Further morphology characterization and discussions indicate that the band-like transport originates from the unique molecule packing motif of Y6 and the special phase of the film. As such, this work not only demonstrates the superior charge transport property of Y6, but also suggests the great potential of developing high-mobility n-type organic semiconductors, on the basis of Y6.

20.
STAR Protoc ; 3(4): 101876, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595949

RESUMO

Doping is an important technique for semiconductor materials, yet effective and controllable doping of organic-inorganic halide perovskites is still a challenge. Here, we present a protocol to dope 2D perovskite (PEA)2SnI4 by incorporating SnI4 in the precursor solutions. We detail steps for preparation of field-effect transistors (FETs) and thermoelectric devices (TEs) based on SnI4-doped (PEA)2SnI4 films. We further describe characterization via conductivity measurement using the four-point probe method, FETs performance, and TEs performance measurements. For complete details on the use and execution of this protocol, please refer to Liu et al. (2022).1.


Assuntos
Compostos de Cálcio , Óxidos , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...