Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(5)2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793679

RESUMO

In recent years, an increasing number of viruses have triggered outbreaks that pose a severe threat to both human and animal life, as well as caused substantial economic losses. It is crucial to understand the genomic structure and epidemiology of these viruses to guide effective clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing technology, has been widely used in genomic research since 2014. This technology offers several advantages over traditional methods and next-generation sequencing (NGS), such as the ability to generate ultra-long reads, high efficiency, real-time monitoring and analysis, portability, and the ability to directly sequence RNA or DNA molecules. As a result, it exhibits excellent applicability and flexibility in virus research, including viral detection and surveillance, genome assembly, the discovery of new variants and novel viruses, and the identification of chemical modifications. In this paper, we provide a comprehensive review of the development, principles, advantages, and applications of nanopore sequencing technology in animal and human virus research, aiming to offer fresh perspectives for future studies in this field.


Assuntos
Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Vírus , Sequenciamento por Nanoporos/métodos , Animais , Humanos , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Viroses/virologia , Viroses/diagnóstico , Genômica/métodos , Nanoporos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...