Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Br J Haematol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363594

RESUMO

Third-generation tyrosine kinase inhibitors (TKIs) have much potential for the treatment of BCR::ABL1-positive leukaemia, particularly that harbouring the ABL1 T315I mutation. Olverembatinib (HQP1351), a novel third-generation TKI, has favourable efficacy and safety profiles in chronic myeloid leukaemia. Here, we present the clinical findings from 31 BCR::ABL1-positive acute lymphoblastic leukaemia (ALL) patients who received olverembatinib. Among the 14 patients with overt relapsed/refractory (R/R) disease (including 10 with the T315I mutation), 71.4% achieved an overall response. Of the other 17 patients with minimal residual disease (MRD)-positive ALL (including 14 with the T315I mutation), 60.0% and 47.1% achieved MRD flow negativity and complete molecular remission, respectively. With a median follow-up time of 16.3 months, the median event-free survival and overall survival were 3.9 and 8.3 months respectively, in overt R/R patients, and 11.5 and 18.4 months in MRD-positive patients. Allogeneic haematopoietic stem cell transplantation further improved outcomes among responders. The safety profile was generally manageable. This study suggests that olverembatinib-based therapy is another promising option for BCR::ABL1-positive ALL in addition to ponatinib, especially for patients with MRD-positive disease and a single T315I mutation.

2.
Proc Natl Acad Sci U S A ; 121(34): e2406519121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136995

RESUMO

In acute promyelocytic leukemia (APL), the promyelocytic leukemia-retinoic acid receptor alpha (PML/RARα) fusion protein destroys PML nuclear bodies (NBs), leading to the formation of microspeckles. However, our understanding, largely learned from morphological observations, lacks insight into the mechanisms behind PML/RARα-mediated microspeckle formation and its role in APL leukemogenesis. This study presents evidence uncovering liquid-liquid phase separation (LLPS) as a key mechanism in the formation of PML/RARα-mediated microspeckles. This process is facilitated by the intrinsically disordered region containing a large portion of PML and a smaller segment of RARα. We demonstrate the coassembly of bromodomain-containing protein 4 (BRD4) within PML/RARα-mediated condensates, differing from wild-type PML-formed NBs. In the absence of PML/RARα, PML NBs and BRD4 puncta exist as two independent phases, but the presence of PML/RARα disrupts PML NBs and redistributes PML and BRD4 into a distinct phase, forming PML/RARα-assembled microspeckles. Genome-wide profiling reveals a PML/RARα-induced BRD4 redistribution across the genome, with preferential binding to super-enhancers and broad-promoters (SEBPs). Mechanistically, BRD4 is recruited by PML/RARα into nuclear condensates, facilitating BRD4 chromatin binding to exert transcriptional activation essential for APL survival. Perturbing LLPS through chemical inhibition (1, 6-hexanediol) significantly reduces chromatin co-occupancy of PML/RARα and BRD4, attenuating their target gene activation. Finally, a series of experimental validations in primary APL patient samples confirm that PML/RARα forms microspeckles through condensates, recruits BRD4 to coassemble condensates, and co-occupies SEBP regions. Our findings elucidate the biophysical, pathological, and transcriptional dynamics of PML/RARα-assembled microspeckles, underscoring the importance of BRD4 in mediating transcriptional activation that enables PML/RARα to initiate APL.


Assuntos
Proteínas de Ciclo Celular , Leucemia Promielocítica Aguda , Proteínas de Fusão Oncogênica , Fatores de Transcrição , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Separação de Fases , Proteínas que Contêm Bromodomínio
3.
Front Med ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115793

RESUMO

SETD2 is the only enzyme responsible for transcription-coupled histone H3 lysine 36 trimethylation (H3K36me3). Mutations in SETD2 cause human diseases including cancer and developmental defects. In mice, Setd2 is essential for embryonic vascular remodeling. Given that many epigenetic modifiers have recently been found to possess noncatalytic functions, it is unknown whether the major function(s) of Setd2 is dependent on its catalytic activity or not. Here, we established a site-specific knockin mouse model harboring a cancer patient-derived catalytically dead Setd2 (Setd2-CD). We found that the essentiality of Setd2 in mouse development is dependent on its methyltransferase activity, as the Setd2CD/CD and Setd2-/- mice showed similar embryonic lethal phenotypes and largely comparable gene expression patterns. However, compared with Setd2-/-, the Setd2CD/CD mice showed less severe defects in allantois development, and single-cell RNA-seq analysis revealed differentially regulated allantois-specific 5' Hoxa cluster genes in these two models. Collectively, this study clarifies the importance of Setd2 catalytic activity in mouse development and provides a new model for comparative study of previously unrecognized Setd2 functions.

4.
Front Vet Sci ; 11: 1393434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988982

RESUMO

Introduction: Yeast peptides have garnered attention as valuable nutritional modifiers due to their potential health benefits. However, the precise mechanisms underlying their effects remain elusive. This study aims to explore the potential of yeast peptides, when added to diets, to mitigate lipopolysaccharide (LPS)-induced intestinal damage and microbiota alterations in rabbits. Methods: A total of 160 35-day-old Hyla line rabbits (0.96 ± 0.06 kg) were randomly assigned to 4 groups. These groups constituted a 2 × 2 factorial arrangement: basal diet (CON), 100 mg/kg yeast peptide diet (YP), LPS challenge + basal diet (LPS), LPS challenge +100 mg/kg yeast peptide diet (L-YP). The experiment spanned 35 days, encompassing a 7-day pre-feeding period and a 28-day formal trial. Results: The results indicated that yeast peptides mitigated the intestinal barrier damage induced by LPS, as evidenced by a significant reduction in serum Diamine oxidase and D-lactic acid levels in rabbits in the L-YP group compared to the LPS group (p < 0.05). Furthermore, in the jejunum, the L-YP group exhibited a significantly higher villus height compared to the LPS group (p < 0.05). In comparison to the LPS group, the L-YP rabbits significantly upregulated the expression of Claudin-1, Occludin-1 and ZO-1 in the jejunum (p < 0.05). Compared with the CON group, the YP group significantly reduced the levels of rabbit jejunal inflammatory cytokines (TNF-α, IL-1ß and IL-6) and decreased the relative mRNA expression of jejunal signaling pathway-associated inflammatory factors such as TLR4, MyD88, NF-κB and IL-1ß (p < 0.05). Additionally, notable changes in the hindgut also included the concentration of short-chain fatty acids (SCFA) of the YP group was significantly higher than that of the CON group (p < 0.05). 16S RNA sequencing revealed a substantial impact of yeast peptides on the composition of the cecal microbiota. Correlation analyses indicated potential associations of specific gut microbiota with jejunal inflammatory factors, tight junction proteins, and SCFA. Conclusion: In conclusion, yeast peptides have shown promise in mitigating LPS-induced intestinal barrier damage in rabbits through their anti-inflammatory effects, modulation of the gut microbiota, and maintenance of intestinal tight junctions.

5.
Int J Qual Health Care ; 36(3)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38988176

RESUMO

Shortening the prehospital emergency medical service (EMS) response time is crucial for saving lives and lowering mortality and disability rates in patients with sudden illnesses. Descriptive analyses of prehospital EMS response time and each component were conducted separately using ambulance trip data from the 120 Dispatch Command Centre in the main urban area of Chongqing in 2021, and then, logistic regression analyses were used to explore the influencing factors. The median prehospital EMS response time in the main urban area of Chongqing was 14.52 min and the mean was 16.14 min. A 44.89% of prehospital EMS response time exceeded 15 min. Response time was more likely to surpass this threshold during peak hours and in high population density areas. Conversely, lower probabilities exceeding 15 min were observed during the night shift, summer, and autumn seasons, and areas with a high density of emergency station. 33.28% of preparation time was >3 min, with the night shift and high population density areas more likely to be >3 min, while for the summer and autumn seasons, high Gross National Product (GDP) per capita areas had a lower likelihood of having preparation time >3 min. 45.52% of travel time was >11 min, with peak hours, summer and autumn, and high GDP per capita areas more likely to have had a travel time >11 min, while night shift and high emergency station density areas had a lower likelihood of travel time >11 min. The primary factors influencing prehospital EMS response time were shifts, traffic scenarios, seasons, GDP per capita, emergency station density, and population density. Relevant departments can devise effective interventions to reduce response time through resource allocation and department coordination, staff training and work arrangement optimisation, as well as public participation and education, thereby enhancing the efficiency of prehospital emergency medical services.


Assuntos
Ambulâncias , Serviços Médicos de Emergência , Estações do Ano , Humanos , Serviços Médicos de Emergência/estatística & dados numéricos , China , Ambulâncias/estatística & dados numéricos , Fatores de Tempo
6.
Nat Rev Dis Primers ; 10(1): 41, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871740

RESUMO

Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Genômica , Terapia de Alvo Molecular , Qualidade de Vida , Imunoterapia Adotiva
7.
Dev Cell ; 59(15): 1954-1971.e7, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776924

RESUMO

A significant variation in chromatin accessibility is an epigenetic feature of leukemia. The cause of this variation in leukemia, however, remains elusive. Here, we identify SMARCA5, a core ATPase of the imitation switch (ISWI) chromatin remodeling complex, as being responsible for aberrant chromatin accessibility in leukemia cells. We find that SMARCA5 is required to maintain aberrant chromatin accessibility for leukemogenesis and then promotes transcriptional activation of AKR1B1, an aldo/keto reductase, by recruiting transcription co-activator DDX5 and transcription factor SP1. Higher levels of AKR1B1 are associated with a poor prognosis in leukemia patients and promote leukemogenesis by reprogramming fructose metabolism. Moreover, pharmacological inhibition of AKR1B1 has been shown to have significant therapeutic effects in leukemia mice and leukemia patient cells. Thus, our findings link the aberrant chromatin state mediated by SMARCA5 to AKR1B1-mediated endogenous fructose metabolism reprogramming and shed light on the essential role of AKR1B1 in leukemogenesis, which may provide therapeutic strategies for leukemia.


Assuntos
Frutose , Animais , Humanos , Camundongos , Adenosina Trifosfatases , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Frutose/metabolismo , Leucemia/metabolismo , Leucemia/patologia , Leucemia/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
J Hematol Oncol ; 17(1): 23, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659046

RESUMO

BACKGROUND: The autologous anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell therapy LCAR-B38M has been approved for the treatment of relapsed and refractory multiple myeloma in many countries across the world under the name ciltacabtagene autoleucel. LEGEND-2 was the first-in-human trial of LCAR-B38M and yielded deep and durable therapeutic responses. Here, we reported the outcomes in LEGEND-2 after a minimal 5-year follow-up. METHODS: Participants received an average dose of 0.5 × 106 cells/kg LCAR-B38M in split or single unfractionated infusions after cyclophosphamide-based lymphodepletion therapy. Investigator-assessed response, survival, safety and pharmacokinetics were evaluated. RESULTS: Seventy-four participants enrolled and had a median follow-up of 65.4 months. The 5-year progression-free survival (PFS) and overall survival (OS) rates were 21.0% and 49.1%, with progressive flattening of the survival curves over time. Patients with complete response (CR) had longer PFS and OS, with 5-year rates of 28.4% and 65.7%, respectively. Twelve patients (16.2%) remained relapse-free irrespective of baseline high-risk cytogenetic abnormality and all had normal humoral immunity reconstituted. An ongoing CR closely correlated with several prognostic baseline indices including favorable performance status, immunoglobulin G subtype, and absence of extramedullary disease, as well as a combination cyclophosphamide and fludarabine preconditioning strategy. Sixty-two (83.8%) suffered progressive disease (PD) and/or death; however, 61.1% of PD patients could well respond to subsequent therapies, among which, the proteasome inhibitor-based regimens benefited the most. Concerning the safety, hematologic and hepatic function recovery were not significantly different between non-PD and PD/Death groups. A low rate of second primary malignancy (5.4%) and no severe virus infection were observed. The patients who tested positive for COVID-19 merely presented self-limiting symptoms. In addition, a sustainable CAR T population of one case with persistent remission was delineated, which was enriched with indolently proliferative and lowly cytotoxic CD4/CD8 double-negative functional T lymphocytes. CONCLUSIONS: These data, representing the longest follow-up of BCMA-redirected CAR T-cell therapy to date, demonstrate long-term remission and survival with LCAR-B38M for advanced myeloma. TRIAL REGISTRATION: LEGEND-2 was registered under the trial numbers NCT03090659, ChiCTRONH-17012285.


Assuntos
Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Mieloma Múltiplo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígeno de Maturação de Linfócitos B/imunologia , Seguimentos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/mortalidade , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Indução de Remissão , Taxa de Sobrevida
9.
J Cancer Res Clin Oncol ; 150(4): 189, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605258

RESUMO

PURPOSE: The synergistic effects of combining arsenic compounds with imatinib against chronic myeloid leukemia (CML) have been established using in vitro data. We conducted a clinical trial to compare the efficacy of the arsenic realgar-indigo naturalis formula (RIF) plus imatinib with that of imatinib monotherapy in patients with newly diagnosed chronic phase CML (CP-CML). METHODS: In this multicenter, randomized, double-blind, phase 3 trial, 191 outpatients with newly diagnosed CP-CML were randomly assigned to receive oral RIF plus imatinib (n = 96) or placebo plus imatinib (n = 95). The primary end point was the major molecular response (MMR) at 6 months. Secondary end points include molecular response 4 (MR4), molecular response 4.5 (MR4.5), progression-free survival (PFS), overall survival (OS), and adverse events. RESULTS: The median follow-up duration was 51 months. Due to the COVID-19 pandemic, the recruitment to this study had to be terminated early, on May 28, 2020. The rates of MMR had no significant statistical difference between combination and imatinib arms at 6 months and any other time during the trial. MR4 rates were similar in both arms. However, the 12-month cumulative rates of MR4.5 in the combination and imatinib arms were 20.8% and 10.5%, respectively (p = 0.043). In core treatment since the 2-year analysis, the frequency of MR4.5 was 55.6% in the combination arm and 38.6% in the imatinib arm (p = 0.063). PFS and OS were similar at five years. The safety profiles were similar and serious adverse events were uncommon in both groups. CONCLUSION: The results of imatinib plus RIF as a first-line treatment of CP-CML compared with imatinib might be more effective for achieving a deeper molecular response (Chinadrugtrials number, CTR20170221).


Assuntos
Antineoplásicos , Arsênio , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Antineoplásicos/efeitos adversos , Arsênio/uso terapêutico , Mesilato de Imatinib/efeitos adversos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Pandemias , Resultado do Tratamento
10.
Front Vet Sci ; 11: 1361908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496307

RESUMO

Introduction: Heat-killed probiotics, as a type of inactivated beneficial microorganisms, possess an extended shelf life and broader adaptability compared to their live counterparts. This study aimed to investigate the impact of heat-killed Lactobacillus acidophilus (L. acidophilus, LA) - a deactivated probiotic on the growth performance, digestibility, antioxidant status, immunity and cecal microbiota of rabbits. Methods: Two hundred weaned Hyla rabbits were randomly allocated into five equal groups (CON, L200, L400, L600, and L800). Over a 28-day period, the rabbits were fed basal diets supplemented with 0, 200, 400, 600, and 800 mg/kg of heat-killed LA, respectively. Results: Results revealed a significant reduction in the feed-to-gain ratio (F/G) in the L600 and L800 groups (p < 0.05). Additionally, the L800 group exhibited significantly higher apparent digestibility of crude fiber (CF) and crude protein (CP) (p < 0.05). Regarding digestive enzyme activities, enhanced trypsin and fibrinase activities were observed in the L600 and L800 groups (p < 0.05). Concerning the regulation of the body's antioxidant status, the L800 group demonstrated elevated levels of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in both serum and ileal tissue (p < 0.05). In terms of immune capacity modulation, serum tumor necrosis factor-α (TNF-α) levels were significantly lower in the L600 and L800 groups (p < 0.05), while immunoglobulin A (IgA) and immunoglobulin M (IgM) levels were higher (p < 0.05). Additionally, the L800 group exhibited a substantial increase in secretory immunoglobulin A (SIgA) levels in the intestinal mucosa (p < 0.05). In comparison to the CON group, the L800 group exhibited a significant increase in the relative abundance of Phascolarctobacterium and Alistipes in the cecum (p < 0.05). Phascolarctobacterium demonstrated a positive correlation with SIgA (p < 0.05), IgM (p < 0.01), and Glutathione peroxidase (GSH-Px) (p < 0.05), while displaying a negative correlation with TNF-α levels (p < 0.05). Concurrently, Alistipes exhibited positive correlations with IgA (p < 0.05), IgM (p < 0.05), SIgA (p < 0.01), GSH-Px (p < 0.05), SOD (p < 0.05), and T-AOC (p < 0.01), and a negative correlation with TNF-α (p < 0.05). Discussion: In conclusion, the dietary incorporation of 600 mg/kg and 800 mg/kg of heat-killed LA positively influenced the growth performance, nutrient digestibility, antioxidant status, immune capacity and cecal microbiota of rabbits. This highlights the potential benefits of utilizing heat-killed probiotics in animal nutrition.

11.
Nat Commun ; 15(1): 1423, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365836

RESUMO

Acute promyelocytic leukemia (APL) represents a paradigm for targeted differentiation therapy, with a minority of patients experiencing treatment failure and even early death. We here report a comprehensive single-cell analysis of 16 APL patients, uncovering cellular compositions and their impact on all-trans retinoic acid (ATRA) response in vivo and early death. We unveil a cellular differentiation hierarchy within APL blasts, rooted in leukemic stem-like cells. The oncogenic PML/RARα fusion protein exerts branch-specific regulation in the APL trajectory, including stem-like cells. APL cohort analysis establishes an association of leukemic stemness with elevated white blood cell counts and FLT3-ITD mutations. Furthermore, we construct an APL-specific stemness score, which proves effective in assessing early death risk. Finally, we show that ATRA induces differentiation of primitive blasts and patients with early death exhibit distinct stemness-associated transcriptional programs. Our work provides a thorough survey of APL cellular hierarchies, offering insights into cellular dynamics during targeted therapy.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422020

RESUMO

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Envelhecimento/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Prognóstico
13.
Nat Commun ; 15(1): 360, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191582

RESUMO

Cytokine release syndrome (CRS) is the most common complication of chimeric antigen receptor redirected T cells (CAR-T) therapy. CAR-T toxicity management has been greatly improved, but CRS remains a prime safety concern. Here we follow serum cytokine levels and circulating immune cell transcriptomes longitudinally in 26 relapsed/refractory multiple myeloma patients receiving the CAR-T product, ciltacabtagene autoleucel, to understand the immunological kinetics of CRS. We find that although T lymphocytes and monocytes/macrophages are the major overall cytokine source in manifest CRS, neutrophil activation peaks earlier, before the onset of severe symptoms. Intracellularly, signaling activation dominated by JAK/STAT pathway occurred prior to cytokine cascade and displayed regular kinetic changes. CRS severity is accurately described and potentially predicted by temporal cytokine secretion signatures. Notably, CAR-T re-expansion is found in three patients, including a fatal case characterized by somatic TET2-mutation, clonal expanded cytotoxic CAR-T, broadened cytokine profiles and irreversible hepatic toxicity. Together, our findings show that a latent phase with distinct immunological changes precedes manifest CRS, providing an optimal window and potential targets for CRS therapeutic intervention and that CAR-T re-expansion warrants close clinical attention and laboratory investigation to mitigate the lethal risk.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Ativação de Neutrófilo , Receptores de Antígenos Quiméricos/genética , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Citocinas
14.
Nat Med ; 30(3): 749-761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287168

RESUMO

Adjuvant chemotherapy benefits patients with resected pancreatic ductal adenocarcinoma (PDAC), but the compromised physical state of post-operative patients can hinder compliance. Biomarkers that identify candidates for prompt adjuvant therapy are needed. In this prospective observational study, 1,171 patients with PDAC who underwent pancreatectomy were enrolled and extensively followed-up. Proteomic profiling of 191 patient samples unveiled clinically relevant functional protein modules. A proteomics-level prognostic risk model was established for PDAC, with its utility further validated using a publicly available external cohort. More importantly, through an interaction effect regression analysis leveraging both clinical and proteomic datasets, we discovered two biomarkers (NDUFB8 and CEMIP2), indicative of the overall sensitivity of patients with PDAC to adjuvant chemotherapy. The biomarkers were validated through immunohistochemistry on an internal cohort of 386 patients. Rigorous validation extended to two external multicentic cohorts-a French multicentric cohort (230 patients) and a cohort from two grade-A tertiary hospitals in China (466 patients)-enhancing the robustness and generalizability of our findings. Moreover, experimental validation through functional assays was conducted on PDAC cell lines and patient-derived organoids. In summary, our cohort-scale integration of clinical and proteomic data demonstrates the potential of proteomics-guided prognosis and biomarker-aided adjuvant chemotherapy for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteômica , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Estudos Prospectivos
15.
Front Med ; 18(2): 327-343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151667

RESUMO

The treatment of PML/RARA+ acute promyelocytic leukemia (APL) with all-trans-retinoic acid and arsenic trioxide (ATRA/ATO) has been recognized as a model for translational medicine research. Though an altered microenvironment is a general cancer hallmark, how APL blasts shape their plasma composition is poorly understood. Here, we reported a cross-sectional correlation network to interpret multilayered datasets on clinical parameters, proteomes, and metabolomes of paired plasma samples from patients with APL before or after ATRA/ATO induction therapy. Our study revealed the two prominent features of the APL plasma, suggesting a possible involvement of APL blasts in modulating plasma composition. One was characterized by altered secretory protein and metabolite profiles correlating with heightened proliferation and energy consumption in APL blasts, and the other featured APL plasma-enriched proteins or enzymes catalyzing plasma-altered metabolites that were potential trans-regulatory targets of PML/RARA. Furthermore, results indicated heightened interferon-gamma signaling characterizing a tumor-suppressing function of the immune system at the first hematological complete remission stage, which likely resulted from therapy-induced cell death or senescence and ensuing supraphysiological levels of intracellular proteins. Overall, our work sheds new light on the pathophysiology and treatment of APL and provides an information-rich reference data cohort for the exploratory and translational study of leukemia microenvironment.


Assuntos
Trióxido de Arsênio , Proteínas Sanguíneas , Leucemia Promielocítica Aguda , Tretinoína , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/sangue , Tretinoína/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Estudos Transversais , Proteínas Sanguíneas/metabolismo , Masculino , Feminino , Metaboloma , Adulto , Antineoplásicos/uso terapêutico , Pessoa de Meia-Idade
16.
Signal Transduct Target Ther ; 8(1): 445, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062078

RESUMO

Ligand-induced receptor dimerization or oligomerization is a widespread mechanism for ensuring communication specificity, safeguarding receptor activation, and facilitating amplification of signal transduction across the cellular membrane. However, cell-surface antigen-induced multimerization (dubbed AIM herein) has not yet been consciously leveraged in chimeric antigen receptor (CAR) engineering for enriching T cell-based therapies. We co-developed ciltacabtagene autoleucel (cilta-cel), whose CAR incorporates two B-cell maturation antigen (BCMA)-targeted nanobodies in tandem, for treating multiple myeloma. Here we elucidated a structural and functional model in which BCMA-induced cilta-cel CAR multimerization amplifies myeloma-targeted T cell-mediated cytotoxicity. Crystallographic analysis of BCMA-nanobody complexes revealed atomic details of antigen-antibody hetero-multimerization whilst analytical ultracentrifugation and small-angle X-ray scattering characterized interdependent BCMA apposition and CAR juxtaposition in solution. BCMA-induced nanobody CAR multimerization enhanced cytotoxicity, alongside elevated immune synapse formation and cytotoxicity-mediating cytokine release, towards myeloma-derived cells. Our results provide a framework for contemplating the AIM approach in designing next-generation CARs.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Imunoterapia Adotiva/métodos , Antígeno de Maturação de Linfócitos B , Linfócitos T
17.
Sci Bull (Beijing) ; 68(21): 2607-2619, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37798178

RESUMO

Epstein-Barr virus (EBV) is the oncogenic driver of multiple cancers. However, the underlying mechanism of virus-cancer immunological interaction during disease pathogenesis remains largely elusive. Here we reported the first comprehensive proteogenomic characterization of natural killer/T-cell lymphoma (NKTCL), a representative disease model to study EBV-induced lymphomagenesis, incorporating genomic, transcriptomic, and in-depth proteomic data. Our multi-omics analysis of NKTCL revealed that EBV gene pattern correlated with immune-related oncogenic signaling. Single-cell transcriptome further delineated the tumor microenvironment as immune-inflamed, -deficient, and -desert phenotypes, in association with different setpoints of cancer-immunity cycle. EBV interacted with transcriptional factors to provoke GPCR interactome (GPCRome) reprogramming. Enhanced expression of chemokine receptor-1 (CCR1) on malignant and immunosuppressive cells modulated virus-cancer interaction on microenvironment. Therapeutic targeting CCR1 showed promising efficacy with EBV eradication, T-cell activation, and lymphoma cell killing in NKTCL organoid. Collectively, our study identified a previously unknown GPCR-mediated malignant progression and translated sensors of viral molecules into EBV-specific anti-cancer therapeutics.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma , Células T Matadoras Naturais , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Proteômica , Linfoma/complicações , Células T Matadoras Naturais/patologia , Microambiente Tumoral/genética
18.
Cancer Cell ; 41(10): 1705-1716.e5, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37774697

RESUMO

We report the results of GUIDANCE-01 (NCT04025593), a randomized, phase II trial of R-CHOP alone or combined with targeted agents (R-CHOP-X) guided by genetic subtyping of newly diagnosed, intermediate-risk, or high-risk diffuse large B cell lymphoma (DLBCL). A total of 128 patients were randomized 1:1 to receive R-CHOP-X or R-CHOP. The study achieved the primary endpoint, showing significantly higher complete response rate with R-CHOP-X than R-CHOP (88% vs. 66%, p = 0.003), with overall response rate of 92% vs. 73% (p = 0.005). Two-year progression-free survival rates were 88% vs. 63% (p < 0.001), and 2-year overall survival rates were 94% vs. 77% (p = 0.001). Meanwhile, post hoc RNA-sequencing validated our simplified genetic subtyping algorithm and previously established lymphoma microenvironment subtypes. Our findings highlight the efficacy and safety of R-CHOP-X, a mechanism-based tailored therapy, which dually targeted genetic and microenvironmental alterations in patients with newly diagnosed DLBCL.

19.
Cell ; 186(21): 4615-4631.e16, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769658

RESUMO

SARS-CoV-2 primary strain-based vaccination exerts a protective effect against Omicron variants-initiated infection, symptom occurrence, and disease severity in a booster-dependent manner. Yet, the underlying mechanisms remain unclear. During the 2022 Omicron outbreak in Shanghai, we enrolled 122 infected adults and 50 uninfected controls who had been unvaccinated or vaccinated with two or three doses of COVID-19 inactive vaccines and performed integrative analysis of 41-plex CyTOF, RNA-seq, and Olink on their peripheral blood samples. The frequencies of HLA-DRhi classical monocytes, non-classical monocytes, and Th1-like Tem tended to increase, whereas the frequency of Treg was reduced by booster vaccine, and they influenced symptom occurrence in a vaccine dose-dependent manner. Intercorrelation and mechanistic analysis suggested that the booster vaccination induced monocytic training, which would prime monocytic activation and maturation rather than differentiating into myeloid-derived suppressive cells upon Omicron infections. Overall, our study provides insights into how booster vaccination elaborates protective immunity across SARS-CoV-2 variants.

20.
Nat Commun ; 14(1): 5077, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604832

RESUMO

Aberrant coagulation and thrombosis are associated with severe COVID-19 post-SARS-CoV-2 infection, yet the underlying mechanism remains obscure. Here we show that serum levels of SARS-CoV-2 envelope (E) protein are associated with coagulation disorders of COVID-19 patients, and intravenous administration of the E protein is able to potentiate thrombosis in mice. Through protein pull-down and mass spectrometry, we find that CD36, a transmembrane glycoprotein, directly binds with E protein and mediates hyperactivation of human and mouse platelets through the p38 MAPK-NF-κB signaling pathway. Conversely, the pharmacological blockade of CD36 or p38 notably attenuates human platelet activation induced by the E protein. Similarly, the genetic deficiency of CD36, as well as the pharmacological inhibition of p38 in mice, significantly diminishes E protein-induced platelet activation and thrombotic events. Together, our study reveals a critical role for the CD36-p38 axis in E protein-induced platelet hyperactivity, which could serve as an actionable target for developing therapies against aberrant thrombotic events related to the severity and mortality of COVID-19.


Assuntos
COVID-19 , Trombose , Humanos , Animais , Camundongos , SARS-CoV-2 , Ativação Plaquetária , Coagulação Sanguínea , Fatores de Transcrição , Antígenos CD36/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...