Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.429
Filtrar
1.
Adv Sci (Weinh) ; : e2404433, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005186

RESUMO

Growing demand for wound care resulting from the increasing chronic diseases and trauma brings intense pressure to global medical health service system. Artificial skin provides mechanical and microenvironmental support for wound, which is crucial in wound healing and tissue regeneration. However, challenges still remain in the clinical application of artificial skin since the lack of the synergy effect of necessary performance. In this study, a multi-functional artificial skin is fabricated through microfluidic spinning technology by using core-shell gel nanofiber scaffolds (NFSs). This strategy can precisely manipulate the microstructure of artificial skin under microscale. The as-prepared artificial skin demonstrates superior characteristics including surface wettability, breathability, high mechanical strength, strain sensitivity, biocompatibility and biodegradability. Notably, this artificial skin has the capability to deliver medications in a controlled and sustained manner, thereby accelerating the wound healing process. This innovative approach paves the way for the development of a new generation of artificial skin and introduces a novel concept for the structural design of the unique core-shell gel NFSs.

2.
Foods ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998532

RESUMO

This study investigates the application of microwave combined induction heating (MCIH) to steam ready-to-eat pork with rice powder, emphasizing the advantages of rapid and uniform heating. The experimental setup included a mixture of 180 g pork strips, 30 g rice powder, and 10 g water in a CPET tray using MCIH with 1080 W microwave (MW) and 130 °C induction heating (IH) for 150 s. The results showed a quick temperature increase rate of 0.56 °C/s that achieved pasteurization against a variety of pathogenic bacteria, such as Listeria monocytogenes, but not Clostridium botulinum, by lethality calculation. Compared to typical electric cooker steaming, MCIH significantly shortened cooking time (8.6 times faster). To address rice starch gelatinization, two-stage heating techniques to steam pork with rice powder were MCIH: 150 s, and then IH: 60 s (MW1), and MCIH: 180 s, and then IH: 30 s (MW2), with no significant differences seen in color or the nine-point taste scale between treatment groups. MCIH groups had smaller shear forces than control. After MCIH cooking, no microbial counts were detected in the MW1 and MW2 groups initially, and the pork with rice powder had a shelf life of 14 days at 4 °C based on aerobic plate count assay.

3.
Pain Manag Nurs ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991908

RESUMO

BACKGROUND: Circumcision-a common pediatric procedure-can cause significant pain and anxiety. Virtual reality has been proposed as a nonpharmacological intervention to alleviate these negative experiences. OBJECTIVE: This systematic review and meta-analysis was conducted to evaluate the effects of virtual reality interventions on pain and anxiety in children undergoing circumcision. METHODS: This study comprehensively searched PubMed, Embase, and Cochrane Library for articles published from database inception to October 2, 2023. Randomized controlled trials that investigated the effects of virtual reality interventions on pain and anxiety during circumcision in children were included. The Cochrane risk-of-bias tool was used to appraise the included studies. The primary outcomes were pain and anxiety scores. RESULTS: Three randomized controlled trials and four data sets involving a total of 224 children were included in our meta-analysis. Virtual reality interventions significantly reduced children's pain and anxiety scores. CONCLUSIONS: Virtual reality interventions are promising nonpharmacological strategies for alleviating children's pain and anxiety during circumcision. Pediatric healthcare professionals use virtual reality interventions to create a child-friendly and healthy healthcare environment.

4.
Bioact Mater ; 40: 261-274, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38973991

RESUMO

Artificial skin involves multidisciplinary efforts, including materials science, biology, medicine, and tissue engineering. Recent studies have aimed at creating skins that are multifunctional, intelligent, and capable of regenerating tissue. In this work, we present a specialized 3D printing ink composed of polyurethane and bioactive glass (PU-BG) and prepare dual-function skin patch by microfluidic-regulated 3D bioprinting (MRBP) technique. The MRBP endows the skin patch with a highly controlled microstructure and superior strength. Besides, an asymmetric tri-layer is further constructed, which promotes cell attachment and growth through a dual transport mechanism based on hydrogen bonds and gradient structure from hydrophilic to superhydrophilic. More importantly, by combining the features of biomedical skin with electronic skin (e-skin), we achieved a biomedical and electronic dual-function skin patch. In vivo experiments have shown that this skin patch can enhance hemostasis, resist bacterial growth, stimulate the regeneration of blood vessels, and accelerate the healing process. Meanwhile, it also mimics the sensory functions of natural skin to realize signal detection, where the sensitivity reached up to 5.87 kPa-1, as well as cyclic stability (over 500 cycles), a wide detection range of 0-150 kPa, high pressure resolution of 0.1 % under the pressure of 100 kPa. This work offers a versatile and effective method for creating dual-function skin patches and provide new insights into wound healing and tissue repair, which have significant implications for clinical applications.

5.
Front Chem ; 12: 1426865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036659

RESUMO

Introduction: Smart multifunctional surfaces targeting intricate biological events or versatile therapeutic strategies are imminent to achieve long-term transmucosal implant success. Methods: This study used dopamine (DA), graphene oxide (GO), and type IV collagen (COL-IV) to construct multilayer nanofilms (DGCn) based on their universal adhesive and biomimetic properties to design a versatile and bioactive titanium implant. The characterization of DGCn on different titanium surfaces was performed, and its loading capacity, release profile, in situ gene delivery, and in vitro biological properties were preliminarily evaluated. Results: Our results demonstrate that hydrogenated TiO2 nanotubes (H) provide a better platform for the DGCn coating than machined Ti and air-TiO2 nanotubes. The H-DGC10 displayed the most stable surface with excellent loading capacity, sustained-release profile, and in situ gene transfection efficiency; this could be due to the high specific surface area of H and GO, as well as the functional groups in H, DA, and GO. Moreover, the H-DGC10 exhibited good biocompatibility for human oral epithelial cells and promoted the expression of integrin ß4 and laminin 332, both being hemidesmosome-related proteins. Discussion: Our findings suggest that H-DGCn can be designed as a smart multifunctional interface for titanium implants to achieve long-term transmucosal implant success and aid in versatile therapeutic strategies.

6.
JAMA ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037800

RESUMO

Importance: The clinical effects of risankizumab (a monoclonal antibody that selectively targets the p19 subunit of IL-23) for the treatment of ulcerative colitis are unknown. Objective: To evaluate the efficacy and safety of risankizumab when administered as an induction and a maintenance therapy for patients with ulcerative colitis. Design, Setting, and Participants: Two phase 3 randomized clinical trials were conducted. The induction trial was conducted at 261 clinical centers (in 41 countries) and enrolled 977 patients from November 5, 2020, to August 4, 2022 (final follow-up on May 16, 2023). The maintenance trial was conducted at 238 clinical centers (in 37 countries) and enrolled 754 patients from August 28, 2018, to March 30, 2022 (final follow-up on April 11, 2023). Eligible patients had moderately to severely active ulcerative colitis; a history of intolerance or inadequate response to 1 or more conventional therapies, advanced therapies, or both types of therapies; and no prior exposure to risankizumab. Interventions: For the induction trial, patients were randomized 2:1 to receive 1200 mg of risankizumab or placebo administered intravenously at weeks 0, 4, and 8. For the maintenance trial, patients with a clinical response (determined using the adapted Mayo score) after intravenous treatment with risankizumab were randomized 1:1:1 to receive subcutaneous treatment with 180 mg or 360 mg of risankizumab or placebo (no longer receiving risankizumab) every 8 weeks for 52 weeks. Main Outcomes and Measures: The primary outcome was clinical remission (stool frequency score ≤1 and not greater than baseline, rectal bleeding score of 0, and endoscopic subscore ≤1 without friability) at week 12 for the induction trial and at week 52 for the maintenance trial. Results: Among the 975 patients analyzed in the induction trial (aged 42.1 [SD, 13.8] years; 586/973 [60.1%] were male; and 677 [69.6%] were White), the clinical remission rates at week 12 were 132/650 (20.3%) for 1200 mg of risankizumab and 20/325 (6.2%) for placebo (adjusted between-group difference, 14.0% [95% CI, 10.0%-18.0%], P < .001). Among the 548 patients analyzed in the maintenance trial (aged 40.9 [SD, 14.0] years; 313 [57.1%] were male; and 407 [74.3%] were White), the clinical remission rates at week 52 were 72/179 (40.2%) for 180 mg of risankizumab, 70/186 (37.6%) for 360 mg of risankizumab, and 46/183 (25.1%) for placebo (adjusted between-group difference for 180 mg of risankizumab vs placebo, 16.3% [97.5% CI, 6.1%-26.6%], P < .001; adjusted between-group difference for 360 mg of risankizumab vs placebo, 14.2% [97.5% CI, 4.0%-24.5%], P = .002). No adverse event signals were detected in the treatment groups. Conclusion and Relevance: Compared with placebo, risankizumab improved clinical remission rates in an induction trial and in a maintenance trial for patients with moderately to severely active ulcerative colitis. Further study is needed to identify benefits beyond the 52-week follow-up. Trial Registration: ClinicalTrials.gov Identifiers: NCT03398148 and NCT03398135.

7.
BMC Oral Health ; 24(1): 824, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033148

RESUMO

BACKGROUND: Excessive inflammation is a major cause of implant failure. The surface morphology, hydrophilicity, and loading of biomaterials are major properties modulating anti-inflammatory macrophage activation. This paper investigates the regulatory effects of modifying the surface of Titanium dioxide nanotubes (TNTs) with graphene oxide (GO) on the polarization of mouse monocyte macrophages (RAW264.7). METHODS: TNT was produced by the anodic oxidation of titanium. GO was subsequently electrodeposited on the TNT to obtain a TNT-GO composite. The samples were characterised through scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction. RAW264.7 cells were separately seeded onto the surface of three groups of samples: pure Ti, TNT, and TNT-GO. Under the condition of lipopolysaccharide stimulation, the influence of the sample surfaces on the gene expression profiles was investigated through RNA sequence analysis. In addition, cell spreading was observed through SEM, cell adhesion and proliferation were analysed using the CCK8 assay, and the expression of inflammation-related factors was investigated by ELISA and cellular immunofluorescence staining. The production of reactive oxygen species (ROS) in the RAW264.7 cells on the surface of the three groups was detected via immunofluorescence staining. RESULTS: The CCK8 results indicated that the adhesion and proliferation of the RAW264.7 cells were reduced on the TNT and TNT-GO surfaces. ELISA results revealed significant differences in the pro-inflammatory factors tumour necrosis factor-α and interleukin-6 secretion among the three groups at 24 h (p < 0.05). The secretion of pro-inflammatory factors significantly reduced and the expression of anti-inflammatory factor IL-10 increased on the TNT and TNT-GO surfaces. The RNA sequencing, ELISA, and cell immunofluorescence staining test results suggested that the inflammatory response of M1 polarization was reduced and the M2 polarization of macrophages was induced on the TNT-GO surface, which may be attributed to the reduction in ROS production. CONCLUSIONS: Under lipopolysaccharide stimulation, the inflammatory response of the RAW264.7 cells was reduced and the M2 polarization of macrophages was promoted on the TNT-GO surface, which may be caused by the reduced ROS production. Consequently, the designed TNT-GO material is promising for implants owing to its excellent inflammation regulation ability.


Assuntos
Grafite , Macrófagos , Nanotubos , Espécies Reativas de Oxigênio , Titânio , Grafite/farmacologia , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Inflamação , Adesão Celular/efeitos dos fármacos , Propriedades de Superfície , Lipopolissacarídeos , Microscopia Eletrônica de Varredura , Proliferação de Células/efeitos dos fármacos , Análise Espectral Raman , Difração de Raios X , Ativação de Macrófagos/efeitos dos fármacos
8.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3270-3279, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041089

RESUMO

This study established a rat model of obesity by using a high-fat diet(HFD) to explore the effect of polymethoxylated flavonoids on glucose and lipid metabolism in the model rats and decipher the role and mechanism of polymethoxylated flavonoids in mitigating obesity. Thirty normal SD rats were selected and randomized into normal, model, ezetimibe(0.1 mg·kg~(-1)), and polymethoxylated flavonoids(62.5 mg·kg~(-1) and 125 mg·kg~(-1)) groups based on the body weight. Except the normal group receiving a conventional diet, the other groups received a HFD. Rats were administrated with corresponding doses of drugs by gavage. During the administration period, the body weight of each group of rats was regularly weighed, and the serum lipid and glucose levels were measured by a fully automated biochemical analyzer. Islet homeostasis and serum levels of obesity factors were measured by ELISA. The 16S rRNA high-throughput sequencing was employed to study the gut microbiota. Hematoxylin-eosin staining was employed to observe the histomorphology of white fat, brown fat, and pancreas. After the wet weights of white fat and brown fat were measured, the organ index was calculated. Immunohistochemistry and Western blot were employed to determine the protein levels. The results showed that polymethoxylated flavonoids reduced the body weight and Lee's index and improved blood lipid levels of the model rats. Polymethoxylated flavonoids reduced blood glucose and insulin secretion, increased insulin responsiveness, and alleviated insulin resistance. In addition, polymethoxylated flavonoids regulated the serum levels of obesity factors and reduced the weights and indexes of white fat and brown fat, the diameter of white adipocytes, and the number of fat vacuoles in brown fat and pancreatic islet cells. The intervention with polymethoxylated flavonoids increased the diversity of gut microbiota in the model rats, increasing the beneficial bacteria associated with glucose and lipid metabolism and reduced the harmful bacteria at the genus level. In addition, polymethoxylated flavonoids up-regulated the protein levels of glucose transporter 4(GLUT4), phosphorylated AMP-activated protein kinase(p-AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α(PGC-1α), and uncoupling protein 1(UCP1). In summary, polymethoxylated flavonoids may increase the body utilization of glucose and lipids by regulating the homeostasis of insulin, the serum levels of obesity factors, the diversity of gut microbiota, and the expression of mitochondrial metabolism-related proteins in brown adipocytes, thereby mitigating obesity in rats.


Assuntos
Dieta Hiperlipídica , Flavonoides , Metabolismo dos Lipídeos , Obesidade , Ratos Sprague-Dawley , Animais , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Metabolismo dos Lipídeos/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Masculino , Glucose/metabolismo , Modelos Animais de Doenças , Humanos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos
9.
Phytomedicine ; 132: 155816, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38964158

RESUMO

BACKGROUND: The development of gut-liver axis metabolic immune crosstalk is intimately associated with intestinal barrier disorder, intestinal SCFAs-Th17/Treg immunological imbalance, and disorders of the gut microbiota. Prior research has discovered that Dendrobium officinale National Herbal Drink (NHD), a traditional Chinese medicine drink with enhanced immunity, may enhance the immunological response in animals with impaired immune systems brought on by cyclophosphamide by repairing intestinal barrier function and controlling turbulence in the gut microbiota. However, whether NHD can further improve the gut-liver axis metabolic immune crosstalk and its related mechanisms need to be systematically studied. OBJECTIVES: The purpose of this study is to clarify the function and mechanism of NHD in enhancing the gut-liver axis metabolic immunological crosstalk brought on by excessive alcohol intake. METHODS: In this work, we set up a mouse model to analyze the metabolic and immunological crosstalk involving the gut-liver axis across 7 weeks of continuous, excessive drinking. At the same time, high and low doses (20,10 ml/kg) of NHD were given by gavage. The effect of NHD on improving the metabolism of gut-liver axis was evaluated by blood lipid, liver lipid deposition, liver function and intestinal pathophysiology. By measuring serum immunological indices, intestinal barrier, and intestinal immune barrier, the impact of NHD on enhancing immune and intestinal barrier function was assessed. Furthermore, immunohistochemistry, immunofluorescence, 16S rRNA, Western blot, q-PCR and other methods were used to detect gut microbiota, SCFAs-GPR41/43 pathway, intestinal Th17/Treg immune cells and PPAR-α-NPC1L1/SREBP1 pathway to elucidate the mechanism by which NHD enhances the gut-liver axis' metabolic immune crosstalk. RESULTS: Our study demonstrated that NHD has the potential to improve the pathophysiological damage caused by gut-liver axis in model mice. NHD also ameliorated the disorder of lipid metabolism. In addition, it regulated the levels of peripheral blood T cell immunity and serum immune factors. And NHD can restore intestinal mechanical and immune barrier damage. NHD has a favorable impact on the quantity of beneficial bacteria, including uncultured_bacterium_g__norank_f__muribaculacea and uncultured_bacterium_g__Turicibacter. Additionally, it raised the model mice's levels of SCFAs (n-butyric acid, isovaleric acid, etc.). This resulted in the promotion of intestinal GPR41/43-ERK1/2 expression and the reshaping of intestinal CD4+T cell Th17/Treg homeostasis. As a consequence, colon IL-22 and IL-10 levels increased, while colon IL-17A levels decreased. Lastly, NHD raised the amount of intestinal IAP/LPS, regulated the development of PPAR-α-NPC1L1/SREBP1 pathway in gut-liver axis, and improve lipid metabolism disorder. CONCLUSIONS: Our study found that NHD can improve the gut-liver axis metabolic immune crosstalk in model mice caused by excessive drinking. The mechanism might be connected to how NHD controls gut microbiota disorders in model mice, the activation of intestinal SCFAs-GPR41/43 pathway, the remodeling of Th17/Treg immune homeostasis of intestinal CD4+T cells, the improvement of IAP/LPS abnormality, and further mediating the PPAR-α-NPC1L1/SREBP1 pathway of lipid metabolism in gut-liver axis.

10.
Eur J Oncol Nurs ; 71: 102653, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991357

RESUMO

PURPOSE: This study aimed to investigate how interactive bibliotherapy impacted the emotional healing process of adolescents with cancer, drawing upon the three-stage emotional healing process theory-identification, catharsis, and insight. METHOD: A qualitative descriptive study was conducted on data from 14 adolescents, aged 10-19 years, diagnosed with or relapsing from leukemia or osteosarcoma within the past two years. Participants received two interactive bibliotherapy sessions using The Rabbit Listened and You Are Special. Data were collected through semistructured interviews and content analyzed. RESULTS: Analysis identified six themes in The Rabbit Listened and eight in You Are Special. Adolescents primarily engaged in identification, empathizing with protagonists and recalling personal experiences. They underwent catharsis, releasing negative emotions and fostering positivity. Insights emerged on companionship, listening, and others' criticism. CONCLUSIONS: Our study validates the use of the three-stage emotional healing process in interdisciplinary bibliotherapy for understanding emotional changes in adolescents with cancer. It sheds light on their concerns and coping strategies. Healthcare practitioners can utilize interactive bibliotherapy based on this framework to initiate therapeutic communication with adolescent cancer patients and improve interventions and care.


Assuntos
Adaptação Psicológica , Biblioterapia , Pesquisa Qualitativa , Humanos , Adolescente , Masculino , Biblioterapia/métodos , Feminino , Criança , Adulto Jovem , Emoções , Neoplasias/terapia , Neoplasias/psicologia , Osteossarcoma/terapia , Osteossarcoma/psicologia
11.
Plant Sci ; 347: 112182, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019090

RESUMO

Photosynthesis is the main source of energy for plants to sustain growth and development. Abnormalities in photosynthesis may cause defects in plant development. The elaborate regulatory mechanism underlying photosynthesis remains unclear. In this study, we identified a natural mutant from the Greater Khingan Mountains and named it as "1-T". This mutant had variegated leaf with irregular distribution of yellow and green. Chlorophyll contents and photosynthetic capacity of 1-T were significantly reduced compared to other poplar genotypes. Furthermore, a transcriptome analysis revealed 3269 differentially expressed genes (DEGs) in 1-T. The products of the DEGs were enriched in photosystem I and photosystem II. Three motifs were significantly enriched in the promoters of these DEGs. Yeast one-hybrid, Electrophoretic mobility shift assays and tobacco transient transformation experiments indicated that PdGLKs may bind to the three motifs. Further analysis indicated that these photosystem related genes were also significantly down-regulated in PdGLK-RNAi poplars. Therefore, we preliminarily concluded that the down-regulation of PdGLKs in 1-T may affect the expression of photosystem-related genes, resulting in abnormal photosystem development and thus affecting the growth and development. Our results provide new insights into the molecular mechanism of photosynthesis regulating plant growth.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38837706

RESUMO

OBJECTIVES: Increasing studies demonstrated the importance of C5a and anti-neutrophil cytoplasmic antibody (ANCA)-induced neutrophil activation in the pathogenesis of ANCA-associated vasculitis (AAV). Sphingosine-1-phosphate (S1P) acts as a downstream effector molecule of C5a and enhances neutrophil activation induced by C5a and ANCA. The current study investigated the role of a S1P receptor modulator FTY720 in experimental autoimmune vasculitis (EAV) and explored the immunometabolism-related mechanisms of FTY720 in modulating ANCA-induced neutrophil activation. METHODS: The effects of FTY720 in EAV were evaluated by quantifying hematuria, proteinuria, crescent formation, tubulointerstitial injury and pulmonary hemorrhage. RNA sequencing of renal cortex and gene enrichment analysis were performed. The proteins of key identified pathways were analyzed in neutrophils isolated from peripheral blood of patients with active AAV and normal controls. We assessed the effects of FTY720 on ANCA-induced neutrophil respiratory burst and neutrophil extracellular traps formation (NETosis). RESULTS: FTY720 treatment significantly attenuated renal injury and pulmonary hemorrhage in EAV. RNA sequencing analyses of renal cortex demonstrated enhanced fatty acid oxidation (FAO) and peroxisome proliferators-activated receptors (PPAR) signalling in FTY720-treated rats. Compared with normal controls, patients with active AAV showed decreased FAO in neutrophils. FTY720-treated differentiated HL-60 cells showed increased expression of carnitine palmitoyltransferase 1A (CPT1a) and PPARα. Blocking or knockdown of CPT1a or PPARα in isolated human neutrophils and HL-60 cells reversed the inhibitory effects of FTY720 on ANCA-induced neutrophil respiratory burst and NETosis. CONCLUSION: FTY720 attenuated renal injury in EAV through upregulating FAO via the PPARα-CPT1a pathway in neutrophils, offering potential immunometabolic targets in AAV treatment.

13.
Sheng Li Xue Bao ; 76(3): 385-393, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38939933

RESUMO

The purpose of the present study was to investigate the modeling time of type 2 diabetes mellitus (T2DM) mouse model induced by high fat diet (HFD) alone and the effects of HFD on the pathology and function of organs related to glucose and lipid metabolism. C57BL/6 mice were fed with normal diet (NC group) or HFD (HFD group). The time of successful T2DM modeling was evaluated by measuring body weight, fasting blood glucose and glucose tolerance at time points of 0, 4, 8, 12, 16 and 20 weeks. The functional and pathological changes of glucose and lipid metabolism related organs were evaluated by detecting insulin tolerance, plasma lipid levels, vascular function, as well as HE staining of pancreas and liver. The results showed that compared with the NC group, the HFD group had significantly increased body weight after 8 weeks of HFD. After 16 weeks of HFD, the HFD group exhibited impaired fasting glucose tolerance. After 20 weeks of HFD, the HFD group mice reached diabetic state, showing impaired glucose tolerance and insulin resistance, islet volume reduction and vacuolar degeneration; Large number of lipid droplets appeared in liver cells, and the level of AMPK phosphorylation in liver tissue was significantly increased in the HFD groups, compared with the NC group; There was endothelial dependent diastolic dysfunction in the thoracic aorta of the HFD group; Compared with the NC group, the HFD group mice showed a significant increase in urinary protein levels. These results suggest that T2DM mouse model can be successfully established by HFD induction alone for 20 weeks. The model is characterized by insulin resistance, fatty liver, hyperlipidemia, vascular dysfunction, renal dysfunction and pathological changes of islet and liver cells, which are similar to those of T2DM patients. Therefore it can be used as an ideal animal model for T2DM research.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Camundongos , Dieta Hiperlipídica/efeitos adversos , Masculino , Resistência à Insulina , Metabolismo dos Lipídeos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fígado/metabolismo , Fígado/patologia
14.
Natl Sci Rev ; 11(7): nwad307, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38883295

RESUMO

Since the discovery of the high-temperature superconductors H3S and LaH10 under high pressure, compressed hydrides have received extensive attention as promising candidates for room-temperature superconductors. As a result of current high-pressure theoretical and experimental studies, it is now known that almost all the binary hydrides with a high superconducting transition temperature (T c) require extremely high pressure to remain stable, hindering any practical application. In order to further lower the stable pressure and improve superconductivity, researchers have started exploring ternary hydrides and had many achievements in recent years. Here, we discuss recent progress in ternary hydrides, aiming to deepen the understanding of the key factors regulating the structural stability and superconductivity of ternary hydrides, such as structural motifs, bonding features, electronic structures, electron-phonon coupling, etc. Furthermore, the current issues and challenges of superconducting ternary hydrides are presented, together with the prospects and opportunities for future research.

15.
Chin Med ; 19(1): 84, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867320

RESUMO

BACKGROUND: Low immunity and sleep disorders are prevalent suboptimal health conditions in contemporary populations, which render them susceptible to the infiltration of pathogenic factors. LJC, which has a long history in traditional Chinese medicine for nourishing the Yin and blood and calming the mind, is obtained by modifying Qiyuan paste. Dendrobium officinale Kimura et Migo has been shown to improve the immune function in sleep-deprived mice. In this study, based on the traditional Chinese medicine theory, LJC was prepared by adding D. officinale Kimura et Migo to Qiyuan paste decoction. METHODS: Indicators of Yin deficiency syndrome, such as back temperature and grip strength, were measured in each group of mice; furthermore, behavioral tests and pentobarbital sodium-induced sleep tests were performed. An automatic biochemical analyzer, enzyme-linked immunosorbent assay kit, and other methods were used to determine routine blood parameters, serum immunoglobulin (IgG, IgA, and IgM), cont (C3, C4), acid phosphatase (ACP) and lactate dehydrogenase (LDH) levels in the spleen, serum hemolysin, and delayed-type hypersensitivity (DTH) levels. In addition, serum levels of γ-aminobutyric acid (GABA) and glutamate (Glu) were detected using high-performance liquid chromatography (HPLC). Hematoxylin-eosin staining and Nissl staining were used to assess the histological alterations in the hypothalamus tissue. Western blot and immunohistochemistry were used to detect the expressions of the GABA pathway proteins GABRA1, GAD, GAT1, and GABAT1 and those of CD4+ and CD8+ proteins in the thymus and spleen tissues. RESULTS: The findings indicated that LJC prolonged the sleep duration, improved the pathological changes in the hippocampus, effectively upregulated the GABA content in the serum of mice, downregulated the Glu content and Glu/GABA ratio, enhanced the expressions of GABRA1, GAT1, and GAD, and decreased the expression of GABAT1 to assuage sleep disorders. Importantly, LJC alleviated the damage to the thymus and spleen tissues in the model mice and enhanced the activities of ACP and LDH in the spleen of the immunocompromised mice. Moreover, serum hemolysin levels and serum IgG, IgA, and IgM levels increased after LJC administration, which manifested as increased CD4+ content, decreased CD8+ content, and enhanced DTH response. In addition, LJC significantly increased the levels of complement C3 and C4, increased the number of white blood cells and lymphocytes, and decreased the percentage of neutrophils in the blood. CONCLUSIONS: LJC can lead to improvements in immunocompromised mice models with insufficient sleep. The underlying mechanism may involve regulation of the GABA/Glu content and the expression levels of GABA metabolism pathway-related proteins in the brain of mice, enhancing their specific and nonspecific immune functions.

16.
Nat Commun ; 15(1): 5043, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871722

RESUMO

Microwave impedance microscopy (MIM) is an emerging scanning probe technique for nanoscale complex permittivity mapping and has made significant impacts in diverse fields. To date, the most significant hurdles that limit its widespread use are the requirements of specialized microwave probes and high-precision cancellation circuits. Here, we show that forgoing both elements not only is feasible but also enhances performance. Using monolithic silicon cantilever probes and a cancellation-free architecture, we demonstrate Johnson-noise-limited, drift-free MIM operation with 15 nm spatial resolution, minimal topography crosstalk, and an unprecedented sensitivity of 0.26 zF/√Hz. We accomplish this by taking advantage of the high mechanical resonant frequency and spatial resolution of silicon probes, the inherent common-mode phase noise rejection of self-referenced homodyne detection, and the exceptional stability of the streamlined architecture. Our approach makes MIM drastically more accessible and paves the way for advanced operation modes as well as integration with complementary techniques.

17.
Nano Lett ; 24(25): 7637-7644, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874010

RESUMO

Revealing the effect of surface structure changes on the electrocatalytic performance is beneficial to the development of highly efficient catalysts. However, precise regulation of the catalyst surface at the atomic level remains challenging. Here, we present a continuous strain regulation of palladium (Pd) on gold (Au) via a mechanically controllable surface strain (MCSS) setup. It is found that the structural changes induced by the strain setup can accelerate electron transfer at the solid-liquid interface, thus achieving a significantly improved performance toward hydrogen evolution reaction (HER). In situ X-ray diffraction (XRD) experiments further confirm that the enhanced activity is attributed to the increased interplanar spacing resulting from the applied strain. Theoretical calculations reveal that the tensile strain modulates the electronic structure of the Pd active sites and facilitates the desorption of the hydrogen intermediates. This work provides an effective approach for revealing the relationships between the electrocatalyst surface structure and catalytic activity.

19.
ACS Appl Mater Interfaces ; 16(27): 35639-35650, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38916253

RESUMO

Photonic crystal coatings with unique structural colors and self-cleaning properties have been providing an efficient way for substrate coloration. However, the enhancement of the robustness and durability of structural colored coatings to meet the requirements in diverse environments remains a challenging task. Here, to realize the application of photonic crystal films under various kinds of conditions, we present a poly(fluoroalkyl acrylate)-based colloidal photonic crystal (fCPC) coating. Fluorinated core-interlayer-shell (FCIS) colloidal particles of polystyrene (PS) core, poly(methyl methacrylate) (PMMA) interlayer, and poly(fluoroalkyl acrylate-ethyl acrylate-butyl acrylate) (P(FA-EA-BA)) shell copolymers have been first prepared by a stepwise emulsion polymerization. fCPCs with self-supporting property, reprocessing ability, friction resistance, as well as excellent wettability and liquid-repellent properties are successfully obtained via the bending-induced ordering technique (BIOT). When applied in antifouling applications, the fCPC film exhibits resistance against various oil and inorganic liquids. Furthermore, the fCPC coatings demonstrate their durability under outdoor conditions by maintaining stable color appearances during rainy and sunny conditions. Additionally, an electronic product adhered with the fCPC coatings is presented, which exhibits a surface that remains clean even after prolonged usage in comparison to the conventional CPC coating. Structural colored textiles with enhanced stability and functionalized liquid-repellent properties are achieved through a one-step process using FCIS particles. Therefore, the developed self-cleaning and comprehensive fCPC coatings capable of withstanding diverse conditions may open up new avenues for the advancement of structural coloration in decoration, vehicle, textile, and building.

20.
J Proteomics ; 304: 105233, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38925350

RESUMO

Early diagnosis and intervention of esophageal squamous cell carcinoma (ESCC) can improve the prognosis. The purpose of this study was to identify biomarkers for ESCC and esophageal precancerous lesions (intraepithelial neoplasia, IEN). Based on the proteomic and genomic data of esophageal tissue including previously reported data, up-regulated proteins with copy number amplification in esophageal cancer were screened as candidate biomarkers. Five proteins, including KDM2A, RAD9A, ECT2, CYHR1 and TONSL, were confirmed by immunohistochemistry on ESCC and normal esophagus (NE). Then, we investigated the expression of 5 proteins in 236 participants (60 NEs, 93 IENs and 83 ESCCs) which were randomly divided into training set and test set. When distinguishing ESCC from NE, the area under curve (AUC) of the multiprotein model was 0.940 in the training set, while the lowest AUC of a protein was 0.735. In the test set, the results were similar. When distinguishing ESCC from IEN or distinguishing IEN from NE, the diagnostic efficiency of the multi-protein models were also improved compared with that of single protein. Our findings suggest that combined detection of KDM2A, RAD9A, ECT2, CYHR1 and TONSL can be used as potential biomarkers for the early diagnosis of ESCC and precancerous lesion development prediction. SIGNIFICANCE: Candidate biomarkers including KDM2A, RAD9A, ECT2, CYHR1 and TONSL screened by integrating genomic and proteomic data from the esophagus can be used as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma and precancerous lesion development prediction.


Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma in Situ/diagnóstico , Carcinoma in Situ/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/metabolismo , Proteômica/métodos , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...