Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Photochem Photobiol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970228

RESUMO

Excessive exposure to ultraviolet radiation (UVR) causes harmful effects on human skin. Pre-exposure application of sunscreen can be protective, but not after damage already has occurred. There is a need for agents that can be applied post-UVR exposure to repair the damage. We investigated a novel compound, NEO400, that appears to meet this medicinal need. NEO400 was created by conjugating linoleic acid to perillyl alcohol. UVR was repeatedly administered to the skin of mice over several weeks, where it caused the typical signs of UV damage, including scaling of the skin, DNA damage, and elevated levels of inflammatory cytokines. However, when NEO400 was applied immediately post-UVR, it triggered the appearance of markers for dermal stem cell proliferation, and no signs of skin damage emerged. Furthermore, when NEO400 was applied to skin that already had incurred significant damage, it accelerated skin healing. When applied individually, linoleic acid and perillyl alcohol were ineffective, indicating that they had to be conjugated in order to exert therapeutic efficacy. None of these skin-protective effects could be achieved with Aloe vera gel, a popular and widely used post-exposure remedy. Our study suggests that NEO400 holds potential as a regenerative treatment for excessively UVR-exposed skin.

2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474302

RESUMO

Our previous research studies have demonstrated the role of microRNA133b (miR133b) in healing the contused spinal cord when administered either intranasally or intravenously 24 h following an injury. While our data showed beneficial effects of exogenous miR133b delivered within hours of a spinal cord injury (SCI), the kinetics of endogenous miR133b levels in the contused spinal cord and rostral/caudal segments of the injury were not fully investigated. In this study, we examined the miR133b dysregulation in a mouse model of moderate unilateral contusion injury at the fifth cervical (C5) level. Between 30 min and 7 days post-injury, mice were euthanized and tissues were collected from different areas of the spinal cord, ipsilateral and contralateral prefrontal motor cortices, and off-targets such as lung and spleen. The endogenous level of miR133b was determined by RT-qPCR. We found that after SCI, (a) most changes in miR133b level were restricted to the injured area with very limited alterations in the rostral and caudal parts relative to the injury site, (b) acute changes in the endogenous levels were predominantly specific to the lesion site with delayed miR133b changes in the motor cortex, and (c) ipsilateral and contralateral hemispheres responded differently to unilateral SCI. Our results suggest that the therapeutic window for exogenous miR133b therapy begins earlier than 24 h post-injury and potentially lasts longer than 7 days.


Assuntos
Medula Cervical , Contusões , MicroRNAs , Traumatismos da Medula Espinal , Animais , Camundongos , Contusões/metabolismo , Modelos Animais de Doenças , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Medula Cervical/lesões
3.
Cancers (Basel) ; 16(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473298

RESUMO

The Epstein-Barr virus (EBV) is accepted as a primary risk factor for certain nasopharyngeal carcinoma (NPC) subtypes, where the virus persists in a latent stage which is thought to contribute to tumorigenesis. Current treatments are sub-optimal, and recurrence occurs in many cases. An alternative therapeutic concept is aimed at triggering the lytic cycle of EBV selectively in tumor cells as a means to add clinical benefit. While compounds able to stimulate the lytic cascade have been identified, their clinical application so far has been limited. We are developing a novel anticancer molecule, NEO212, that was generated by covalent conjugation of the alkylating agent temozolomide (TMZ) to the naturally occurring monoterpene perillyl alcohol (POH). In the current study, we investigated its potential to trigger the lytic cycle of EBV in NPC cells in vitro and in vivo. We used the established C666.1 cell line and primary patient cells derived from the brain metastasis of a patient with NPC, both of which harbored latent EBV. Upon treatment with NEO212, there was an increase in EBV proteins Zta and Ea-D, key markers of the lytic cycle, along with increased levels of CCAAT/enhancer-binding protein homologous protein (CHOP), a marker of endoplasmic reticulum (ER) stress, followed by the activation of caspases. These effects could also be confirmed in tumor tissue from mice implanted with C666.1 cells. Towards a mechanistic understanding of these events, we used siRNA-mediated knockdown of CHOP and inclusion of anti-oxidant compounds. Both approaches blocked lytic cycle induction by NEO212. Therefore, we established a sequence of events, where NEO212 caused reactive oxygen species (ROS) production, which triggered ER stress and elevated the levels of CHOP, which was required to stimulate the lytic cascade of EBV. Inclusion of the antiviral agent ganciclovir synergistically enhanced the cytotoxic impact of NEO212, pointing to a potential combination treatment for EBV-positive cancers which should be explored further. Overall, our study establishes NEO212 as a novel agent able to stimulate EBV's lytic cycle in NPC tumors, with implications for other virus-associated cancers.

4.
J Neurosurg ; 140(6): 1549-1557, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157532

RESUMO

OBJECTIVE: Malignancies of the CNS are difficult to treat because the blood-brain barrier (BBB) prevents most therapeutics from reaching the intracranial lesions at sufficiently high concentrations. This also applies to chimeric antigen receptor (CAR) T cells, for which systemic delivery is inferior to direct intratumoral or intraventricular injection of the cells. The authors previously reported on a novel approach to safely and reversibly open the BBB of mice by applying intra-arterial (IA) injections of NEO100, a pharmaceutical-grade version of the natural monoterpene perillyl alcohol. The authors hypothesized that this method would enable enhanced brain entry and therapeutic activity of intravenously delivered CAR T cells, which the authors tested in a mouse model of CNS lymphoma. METHODS: Human Raji lymphoma cells were implanted into the brains of immune-deficient mice. After tumor uptake was confirmed with bioluminescent imaging, 0.3% NEO100 was injected intra-arterially, which was followed by intravenous (IV) delivery of CD19-targeted CAR T cells. After this single intervention, tumor growth was monitored with imaging, long-term survival of mice was recorded, and select mice were euthanized to analyze the distribution of CAR T cells in brain tissue. RESULTS: Intravenously injected CAR T cells could be readily detected in brain tumor areas after IA injection of NEO100 but not after IA injection of the vehicle (without NEO100). Although all untreated control animals died within 3 weeks, all mice that received IA NEO100 followed by IV CAR T cells survived and thrived for 200 days, when the experiment was terminated. Of the mice that received IV CAR T cells without prior IA NEO100, 3 died within 3 weeks and 2 survived long-term. CONCLUSIONS: BBB opening by IA NEO100 facilitates brain entry of intravenously delivered CD19 CAR T cells. The long-term survival of all mice with CNS lymphoma, along with the disappearance of the tumor as determined with imaging, suggests that this one-time therapeutic intervention was curative. BBB opening by IA NEO100 may offer a novel option to increase brain access by CAR T cells.


Assuntos
Imunoterapia Adotiva , Injeções Intra-Arteriais , Receptores de Antígenos Quiméricos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Modelos Animais de Doenças , Barreira Hematoencefálica , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral/transplante , Linfoma/terapia , Linfoma/imunologia , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias do Sistema Nervoso Central/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Camundongos SCID
5.
J Craniovertebr Junction Spine ; 14(3): 221-229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860027

RESUMO

Objective: Venous thromboembolic event (VTE) after spine surgery is a rare but potentially devastating complication. With the advent of machine learning, an opportunity exists for more accurate prediction of such events to aid in prevention and treatment. Methods: Seven models were screened using 108 database variables and 62 preoperative variables. These models included deep neural network (DNN), DNN with synthetic minority oversampling technique (SMOTE), logistic regression, ridge regression, lasso regression, simple linear regression, and gradient boosting classifier. Relevant metrics were compared between each model. The top four models were selected based on area under the receiver operator curve; these models included DNN with SMOTE, linear regression, lasso regression, and ridge regression. Separate random sampling of each model was performed 1000 additional independent times using a randomly generated training/testing distribution. Variable weights and magnitudes were analyzed after sampling. Results: Using all patient-related variables, DNN using SMOTE was the top-performing model in predicting postoperative VTE after spinal surgery (area under the curve [AUC] =0.904), followed by lasso regression (AUC = 0.894), ridge regression (AUC = 0.873), and linear regression (AUC = 0.864). When analyzing a subset of only preoperative variables, the top-performing models were lasso regression (AUC = 0.865) and DNN with SMOTE (AUC = 0.864), both of which outperform any currently published models. Main model contributions relied heavily on variables associated with history of thromboembolic events, length of surgical/anesthetic time, and use of postoperative chemoprophylaxis. Conclusions: The current study provides promise toward machine learning methods geared toward predicting postoperative complications after spine surgery. Further study is needed in order to best quantify and model real-world risk for such events.

6.
Autophagy ; 19(12): 3169-3188, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37545052

RESUMO

Glioblastoma (GBM) is the most aggressive primary brain tumor, exhibiting a high rate of recurrence and poor prognosis. Surgery and chemoradiation with temozolomide (TMZ) represent the standard of care, but, in most cases, the tumor develops resistance to further treatment and the patients succumb to disease. Therefore, there is a great need for the development of well-tolerated, effective drugs that specifically target chemoresistant gliomas. NEO214 was generated by covalently conjugating rolipram, a PDE4 (phosphodiesterase 4) inhibitor, to perillyl alcohol, a naturally occurring monoterpene related to limonene. Our previous studies in preclinical models showed that NEO214 harbors anticancer activity, is able to cross the blood-brain barrier (BBB), and is remarkably well tolerated. In the present study, we investigated its mechanism of action and discovered inhibition of macroautophagy/autophagy as a key component of its anticancer effect in glioblastoma cells. We show that NEO214 prevents autophagy-lysosome fusion, thereby blocking autophagic flux and triggering glioma cell death. This process involves activation of MTOR (mechanistic target of rapamycin kinase) activity, which leads to cytoplasmic accumulation of TFEB (transcription factor EB), a critical regulator of genes involved in the autophagy-lysosomal pathway, and consequently reduced expression of autophagy-lysosome genes. When combined with chloroquine and TMZ, the anticancer impact of NEO214 is further potentiated and unfolds against TMZ-resistant cells as well. Taken together, our findings characterize NEO214 as a novel autophagy inhibitor that could become useful for overcoming chemoresistance in glioblastoma.Abbreviations: ATG: autophagy related; BAFA1: bafilomycin A1; BBB: blood brain barrier; CQ: chloroquine; GBM: glioblastoma; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MGMT: O-6-methylguanine-DNA methyltransferase; MTOR: mechanistic target of rapamycin kinase; MTORC: MTOR complex; POH: perillyl alcohol; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TMZ: temozolomide.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Autofagia/genética , Rolipram/metabolismo , Rolipram/farmacologia , Rolipram/uso terapêutico , Morte Celular , Monoterpenos/farmacologia , Monoterpenos/metabolismo , Monoterpenos/uso terapêutico , Glioma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Lisossomos/metabolismo
7.
Neural Regen Res ; 18(11): 2489-2496, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282481

RESUMO

DNA methylation is a critical epigenetic regulator in the occurrence and development of diseases and is closely related to various functional responses in relation to spinal cord injury. To investigate the role of DNA methylation in spinal cord injury, we constructed a library with reduced-representation bisulfite sequencing data obtained at various time points (day 0-42) after spinal cord injury in mice. Global DNA methylation levels, specifically non-CpG (CHG and CHH) methylation levels, decreased modestly following spinal cord injury. Stages post-spinal cord injury were classified as early (day 0-3), intermediate (day 7-14), and late (day 28-42) based on similarity and hierarchical clustering of global DNA methylation patterns. The non-CpG methylation level, which included CHG and CHH methylation levels, was markedly reduced despite accounting for a minor proportion of total methylation abundance. At multiple genomic sites, including the 5' untranslated regions, promoter, exon, intron, and 3' untranslated regions, the non-CpG methylation level was markedly decreased following spinal cord injury, whereas the CpG methylation level remained unchanged at these locations. Approximately one-half of the differentially methylated regions were located in intergenic areas; the other differentially methylated regions in both CpG and non-CpG regions were clustered in intron regions, where the DNA methylation level was highest. The function of genes associated with differentially methylated regions in promoter regions was also investigated. From Gene Ontology analysis results, DNA methylation was implicated in a number of essential functional responses to spinal cord injury, including neuronal synaptic connection creation and axon regeneration. Notably, neither CpG methylation nor non-CpG methylation was implicated in the functional response of glial or inflammatory cells. In summary, our work elucidated the dynamic pattern of DNA methylation in the spinal cord following injury and identified reduced non-CpG methylation as an epigenetic target after spinal cord injury in mice.

9.
Cells ; 12(6)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36980272

RESUMO

Despite important advances in the pre-clinical animal studies investigating the neuroinhibitory microenvironment at the injury site, traumatic injury to the spinal cord remains a major problem with no concrete response. Here, we examined whether (1) intranasal (IN) administration of miR133b/Ago2 can reach the injury site and achieve a therapeutic effect and (2) NEO100-based formulation of miR133b/Ago2 can improve effectiveness. 24 h after a cervical contusion, C57BL6 female mice received IN delivery of miR133b/Ago2 or miR133b/Ago2/NEO100 for 3 days, one dose per day. The pharmacokinetics of miR133b in the spinal cord lesion was determined by RT-qPCR. The role of IN delivery of miR133b on motor function was assessed by the grip strength meter (GSM) and hanging tasks. The activity of miR133b at the lesion site was established by immunostaining of fibronectin 1 (FN1), a miR133b target. We found that IN delivery of miR133b/Ago2 (1) reaches the lesion scar and co-administration of miR133b with NEO100 facilitated the cellular uptake; (2) enhanced the motor function and addition of NEO100 potentiated this effect and (3) targeted FN1 expression at the lesion scar. Our results suggest a high efficacy of IN delivery of miR133b/Ago2 to the injured spinal cord that translates to improved healing with NEO100 further potentiating this effect.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Animais , Feminino , Camundongos , Administração Intranasal , Proteínas Argonautas/farmacologia , Proteínas Argonautas/uso terapêutico , Cicatriz/patologia , Contusões , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
10.
J Neurosurg ; 139(3): 822-830, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738464

RESUMO

OBJECTIVE: Immune checkpoint-inhibitory therapeutic antibodies have shown striking activity against several types of cancers but are less effective against brain-localized malignancies, in part due to the protective effect of the blood-brain barrier (BBB). The authors hypothesized that intraarterial (IA) delivery of a novel compound, NEO100, has the potential to safely and reversibly open the BBB to enable brain-targeted therapeutic activity of checkpoint-inhibitory antibodies. METHODS: Immunocompetent mice with syngeneic glioblastoma or melanoma cells implanted into their brains were subjected to a single IA injection of NEO100 to open their BBB. One dose of murine anti-PD-1/PD-L1 antibody was either coinjected with NEO100 or separately injected intravenously. Brain penetration of these antibodies and levels of CD8+ T cell infiltrate into the tumor microenvironment were quantitated and animal survival was monitored. RESULTS: IA NEO100 enabled the increased accumulation of checkpoint-inhibitory antibodies in the brain, along with greater numbers of T cells. In both malignancy models, a single intervention of IA NEO100 combined with antibody resulted in the long-term survival of animals. Antibody treatment in the absence of NEO100 was far less effective. CONCLUSIONS: BBB opening by IA NEO100 facilitates brain tumor access by checkpoint-inhibitory antibodies and enables their therapeutic activity, along with increased levels of T-cell recruitment.


Assuntos
Neoplasias Encefálicas , Carcinoma , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Imunoterapia/métodos , Encéfalo , Microambiente Tumoral
11.
Cancers (Basel) ; 14(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551551

RESUMO

Many patients with acute myeloid leukemia (AML) are still dying from this disease. In the past, the alkylating agent temozolomide (TMZ) has been investigated for AML and found to be partially effective; however, the presence of O6-methylguanine DNA methyltransferase (MGMT; a DNA repair enzyme) in tumor cells confers profound treatment resistance against TMZ. We are developing a novel anticancer compound, called NEO212, where TMZ was covalently conjugated to perillyl alcohol (a naturally occurring monoterpene). NEO212 has revealed robust therapeutic activity in a variety of preclinical cancer models, including AML. In the current study, we investigated its impact on a panel of human AML cell lines and found that it exerted cytotoxic potency even against MGMT-positive cells that were highly resistant to TMZ. Furthermore, NEO212 strongly stimulated the expression of a large number of macrophage-associated marker genes, including CD11b/ITGAM. This latter effect could not be mimicked when cells were treated with TMZ or an equimolar mix of individual agents, TMZ plus perillyl alcohol. The superior cytotoxic impact of NEO212 appeared to involve down-regulation of MGMT protein levels. In a mouse model implanted with TMZ-resistant, MGMT-positive AML cells, two 5-day cycles of 25 mg/kg NEO212 achieved an apparent cure, as mice survived >300 days without any signs of disease. In parallel toxicity studies with rats, a 5-day cycle of 200 mg/kg NEO212 was well tolerated by these animals, whereas animals that were given 200 mg/kg TMZ all died due to severe leukopenia. Together, our results show that NEO212 exerts pleiotropic effects on AML cells that include differentiation, proliferation arrest, and eventual cell death. In vivo, NEO212 was well tolerated even at dosages that far exceed the therapeutic need, indicating a large therapeutic window. These results present NEO212 as an agent that should be considered for development as a therapeutic agent for AML.

12.
J Neurosurg Case Lessons ; 4(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36088606

RESUMO

BACKGROUND: Intranasal delivery of NEO100, a pharmaceutical-grade version of the natural monoterpene perillyl alcohol (POH), is undergoing clinical phase IIa testing as a treatment for glioblastoma (GBM). However, so far there is no evidence that intranasal delivery of NEO100 indeed results in POH reaching intracranial malignancies in a patient. OBSERVATIONS: After surgical removal of her recurrent GBM tumor, a patient received daily intranasal NEO100 therapy for more than 3 years before a second recurrence emerged. At that time, a final dose of NEO100 was given shortly before the tumor tissue was surgically removed, and the tissue was processed for high-performance liquid chromatography analysis of POH and its primary metabolite, perillic acid (PA). Both molecules could readily be detected in the tumor tissue. LESSONS: This is the first demonstration of POH and PA in brain tumor tissue from any patient. It reveals that intranasal administration of NEO100 is a valid approach to achieve delivery of this agent to a brain tumor. In view of the noninvasive and safe nature of this method, along with tentative indications of activity, our findings add confidence to the notion that intranasal administration of NEO100 holds potential as a new treatment option for brain-localized malignancies.

13.
Front Oncol ; 12: 934638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837107

RESUMO

Background: Glioblastoma (GBM) is the most common primary, malignant brain tumor in adults and has a poor prognosis. The median progression-free survival (mPFS) of newly diagnosed GBM is approximately 6 months. The recurrence rate approaches 100%, and the case-fatality ratio approaches one. Half the patients die within 8 months of recurrence, and 5-year survival is less than 10%. Advances in treatment options are urgently needed. We report on the efficacy and safety of a therapeutic vaccine (SITOIGANAP: Epitopoietic Research Corporation) administered to 21 patients with recurrent GBM (rGBM) under a Right-to-Try/Expanded Access program. SITOIGANAP is composed of both autologous and allogeneic tumor cells and lysates. Methods: Twenty-one patients with rGBM received SITOIGANAP on 28-day cycles in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), cyclophosphamide, bevacizumab, and an anti-programmed cell death protein-1 (anti-PD-1) monoclonal antibody (either nivolumab or pembrolizumab). Results: The mPFS was 9.14 months, and the median overall survival (mOS) was 19.63 months from protocol entry. Currently, 14 patients (67%) are at least 6 months past their first SITOIGANAP cycle; 10 patients (48%) have received at least six cycles and have a mOS of 30.64 months and 1-year survival of 90%. The enrollment and end-of-study CD3+/CD4+ T-lymphocyte counts strongly correlate with OS. Conclusions: The addition of SITOIGANAP/GM-CSF/cyclophosphamide to bevacizumab and an anti-PD-1 monoclonal antibody resulted in a significant survival benefit compared to historic control values in rGBM with minimal toxicity compared to current therapy.

14.
Eur Spine J ; 31(7): 1775-1783, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35147769

RESUMO

PURPOSE: The aim of this study was to characterize if the use of surgical drains or length of drain placement following spine surgery increases the risk of post-operative infection. METHODS: Records of patients undergoing elective spinal surgery at a tertiary care center were collected between May 5, 2016 and August 16, 2018. Pre-operative baseline characteristics were recorded including patient's demographics and comorbidities. Intraoperative procedure information was documented related to procedure type, blood loss, and antibiotics used. Following surgery, patients were then further subdivided into two groups: patients who were discharged with a spinal surgical site drain and patients who did not receive a drain. Post-operative surgical variables included length of stay (LOS), drain length, number of antibiotics given, and type of post-operative infection. Univariate and multivariate statistical analysis was conducted. RESULTS: A total of 671 patients were included in the current study, 386 (57.5%) with and 285 (42.5%) without the drain. The overall infection rate was 5.7% with 6.22% among patients with the drain compared to 4.91% in patients without drain. The univariate analysis identified the following variables to be significantly associated with the infection: total number of surgical levels, spinal region, blood loss, redosing of antibiotics, length of stay, length of drain placement, and number of antibiotics (P < 0.05). However, the multivariate analysis none of the predictors was significant. CONCLUSIONS: The current study shows that the placement of drain does not increase rate of infection, irrespective of levels, length of surgery, or approach.


Assuntos
Drenagem , Infecção da Ferida Cirúrgica , Antibacterianos/uso terapêutico , Drenagem/efeitos adversos , Drenagem/métodos , Humanos , Tempo de Internação , Região Lombossacral , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia
15.
Pharmaceutics ; 13(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34959448

RESUMO

Perillyl alcohol (POH) is a naturally occurring monoterpenoid related to limonene that is present in the essential oils of various plants. It has diverse applications and can be found in household items, including foods, cosmetics, and cleaning supplies. Over the past three decades, it has also been investigated for its potential anticancer activity. Clinical trials with an oral POH formulation administered to cancer patients failed to realize therapeutic expectations, although an intra-nasal POH formulation yielded encouraging results in malignant glioma patients. Based on its amphipathic nature, POH revealed the ability to overcome biological barriers, primarily the blood-brain barrier (BBB), but also the cytoplasmic membrane and the skin, which appear to be characteristics that critically contribute to POH's value for drug development and delivery. In this review, we present the physicochemical properties of POH that underlie its ability to overcome the obstacles placed by different types of biological barriers and consequently shape its multifaceted promise for cancer therapy and applications in drug development. We summarized and appraised the great variety of preclinical and clinical studies that investigated the use of POH for intranasal delivery and nose-to-brain drug transport, its intra-arterial delivery for BBB opening, and its permeation-enhancing function in hybrid molecules, where POH is combined with or conjugated to other therapeutic pharmacologic agents, yielding new chemical entities with novel mechanisms of action and applications.

16.
Cureus ; 13(11): e19573, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34926045

RESUMO

The prognosis for patients diagnosed with recurrent glioblastoma (GBM) remains poor, with no clear standard of care regarding salvage therapy. Common approaches include chemotherapy, re-resection, tumor treating fields, and reirradiation. However, most studies have shown these to have limited benefits. Reirradiation is particularly difficult due to concern for increased risk of toxicity to surrounding normal brain tissue. A novel intracranial brachytherapy system called GammaTile® (GT Medical Technologies, Tempe, Arizona) involves the placement of Cesium-131 radioactive tiles in the tumor cavity following maximal safe resection. This allows for a highly conformal dose distribution with rapid fall-off to minimize overlap with prior radiation fields and for the application of radiation directly to the high-risk tumor bed. This case report highlights a patient with GBM who survived 11.5 years through multiple recurrences and discusses the many salvage treatments he received, including bevacizumab, irinotecan, and stereotactic radiosurgery (SRS). This case exemplifies that aggressive systemic and local therapies can work well in select patients allowing for long-term survival with a good quality of life. Further efforts should be made to identify which patients may benefit from these therapies. The case study additionally reports on the use of GammaTile therapy. Due to prior external beam radiation therapy and SRS to the treatment site, further external beam radiation options were limited, and the patient was offered GammaTile as local therapy. Although it did not provide a survival benefit in this case due to progressive disease outside of the field of treatment, GammaTile serves as a valuable option in providing local therapy to patients who can no longer receive further radiation. It should be used with careful consideration in lesions characterized by aggressive local invasion.

18.
Cancers (Basel) ; 13(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298603

RESUMO

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.

19.
Curr Protoc ; 1(6): e140, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34170630

RESUMO

Patient-derived cells from surgical resections are of paramount importance to brain tumor research. It is well known that there is cellular and microenvironmental heterogeneity within a single tumor mass. Thus, current established protocols for propagating tumor cells in vitro are limiting because resections obtained from conventional singular samples limit the diversity in cell populations and do not accurately model the heterogeneous tumor. Utilization of discarded tissue obtained from cavitron ultrasonic surgical aspirator (CUSA) of the whole tumor mass allows for establishing novel cell lines in vitro from the entirety of the tumor, thereby creating an accurate representation of the heterogeneous population of cells originally present in the tumor. Furthermore, while others have described protocols for establishing patient tumor lines once tissue has arrived in the research lab, a primer from the operating room (OR) to the research lab has not been described before. This is integral, as basic research scientists need to understand the surgical environment of the OR, including the methods utilized to obtain a patient's tumor resection, in order to more accurately model cancer biology in laboratory. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Establishment of brain tumor cell lines from patient-derived CUSA samples: processing brain tumor sample from the OR to the lab Support Protocol 1: Sterilization of microsurgical tools in preparation for dissection Support Protocol 2: Collagen coating of tissue culture flasks Basic Protocol 2: Selection of tumor cells in vitro Support Protocol 3: FACS sorting tumor sample to isolate cancer cells from heterogeneous cell population.


Assuntos
Neoplasias Encefálicas , Terapia por Ultrassom , Humanos , Laboratórios , Salas Cirúrgicas , Ultrassom
20.
J Neurosci Res ; 99(9): 2029-2045, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33969526

RESUMO

CRISPR (clustered regularly interspaced short palindromic repeat)-based genetic screens offer unbiased and powerful tools for systematic and specific evaluation of phenotypes associated with specific target genes. CRISPR screens have been utilized heavily in vitro to identify functional coding and noncoding genes in a large number of cell types, including glioblastoma (GB), though no prior study has described the evaluation of CRISPR screening in GB in vivo. Here, we describe a protocol for targeting and transcriptionally repressing GB-specific long noncoding RNAs (lncRNAs) by CRISPR interference (CRISPRi) system in vivo, with tumor growth in the mouse cerebral cortex. Given the target-specific parameters of each individual screen, we list general steps involved in transducing guide RNA libraries into GB tumor lines, maintaining sufficient coverage, as well as cortically injecting and subsequently isolating transduced screen tumor cell populations for analysis. Finally, in order to demonstrate the use of this technique to discern an essential lncRNA, HOTAIR, from a nonessential lncRNA, we injected a 1:1 (HOTAIR:control nonessential lncRNA knockdown) mixture of fluorescently tagged U87 GB cells into the cortex of eight mice, evaluating selective depletion of HOTAIR-tagged cells at 2 weeks of growth. Fluorescently tagged populations were analyzed via flow cytometry for hiBFP (control knockdown) and green fluorescent protein (HOTAIR knockdown), revealing 17% (p = 0.007) decrease in fluorescence associated with HOTAIR knockdown relative to control. The described in vivo CRISPR screening methodology thus appears to be an effective option for identifying noncoding (and coding) genes affecting GB growth within the mouse cortex.


Assuntos
Neoplasias Encefálicas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Glioblastoma/genética , RNA não Traduzido/genética , Animais , Neoplasias Encefálicas/patologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Técnicas de Inativação de Genes/métodos , Glioblastoma/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Nus , Carga Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...