Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 479: 135690, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39255669

RESUMO

ß-ionone is a volatile metabolite of Microcystis aeruginosa that is toxic to aquatic organisms. Using Daphnia sinensis as model, our present study found that ß-ionone could significantly reduce heart rate and feeding rate, and induce intestinal emptying. Transcriptomic analysis showed that ß-ionone could significantly inhibit the expression of acetylcholinesterase (AchE) mRNA, while metabolomics further revealed that ß-ionone could significantly increase the level of acetylcholine (Ach) in D. sinensis. These results indicated that ß-ionone might act as an AchE inhibitor, resulting in an increase in Ach levels. To test this hypothesis, both in vivo and in vitro experiments demonstrated that ß-ionone could significantly reduce AchE activity. Furthermore, the inhibitory effects of ß-ionone on heart rate and feeding rate could be blocked by the M-type Ach receptor (mAchR) blocker. These findings confirm that ß-ionone is a novel AchE inhibitor. ß-ionone could inhibit the activity of AchE, which in turn resulted in an increase of Ach in D. sinensis. Consequently, elevated levels of Ach could suppress the heart rate and feeding rate of D. sinensis by activating the mAchR, while concurrently accelerating the rate of intestinal emptying by stimulating intestinal peristalsis, thereby obstructing the digestion of algae within the intestinal tract.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Daphnia , Norisoprenoides , Animais , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/farmacologia , Daphnia/efeitos dos fármacos , Norisoprenoides/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Acetilcolina/metabolismo
2.
J Phys Chem Lett ; 15(37): 9380-9387, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39240654

RESUMO

Improving fluorescence emission efficiency is essential to develop novel luminescent materials. However, the low water solubility of conventional fluorescent dyes is a serious obstacle to broadening the application scope. Herein, a green protocol have been proposed: Two poorly water-soluble naphthalimide derivatives MONI and MANI with high fluorescent quantum yields (larger than 0.95 in toluene solution) were loaded in three different sizes of cyclodextrin (CD; α, ß, γ-CD) with high water solubility. To further check the feasibility of the proposal, density functional theory (DFT) and time dependent-DFT (TD-DFT) methods combining the Own N-layer Integrated molecular Orbital molecular Mechanics (ONIOM) model with dispersion correction were employed to investigate the geometric and electronic structures of complexes CD·MXNI (X = N, O) in the excited-state process. TD-DFT calculations predict that the fantastic emission behavior of MXNI can be reserved after binding with CD, even improving fluorescent intensity in aqueous solution. Basis set superposition error (BSSE) correction and symmetry adapted perturbation theory (SAPT) were adopted to estimate the complexation energies and weak noncovalent interactions. The middle-sized ß-CD is the perfect candidate to allow fluorescent molecules to settle into its cavity, forming an inclusion complex. Energy decomposition analysis (EDA) indicates that dispersion is superior to electrostatics interaction in embedding-type ß-CD·MXNI, while it is contrary in α,γ-CD·MXNI. NMR calculations further prove the existence of a strong intermolecular hydrogen bond interaction between host and guest. Weak interactions that limited molecular vibration and hampered the nonradiative inactivation channel are conducive to the enhanced emission intensity.

3.
J Phys Chem A ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344670

RESUMO

Single-walled carbon nanotubes (SWCNTs) have gained a lot of attention in the past few decades due to their promising optoelectronic properties. In addition, SWCNTs can form complexes that have good chemical stability and transport properties with other optical functional materials through noncovalent interactions. Elucidating the detailed mechanism of these complexes is of great significance for improving their optoelectronic properties. Nevertheless, simulating the photoinduced dynamics of these complexes accurately is rather challenging since they usually contain hundreds of atoms. To save computational efforts, most of the previous works have ignored the excitonic effects by employing nonadiabatic carrier (electron and hole) dynamics simulations. To properly consider the influence of excitonic effects on the photoinduced ultrafast processes of the SWCNT-tetraphenyl porphyrin (H2TPP) complex and to further improve the computational efficiency, we developed the nonadiabatic molecular dynamics (NAMD) method based on the extended tight binding-based simplified Tamm-Dancoff approximation (sTDA-xTB), which is applied to study the ultrafast photoinduced dynamics of the noncovalent SWCNT-porphyrin complex. In combination with statically electronic structure calculations, the present work successfully reveals the detailed microscopic mechanism of the ultrafast excitation energy transfer process of the complex. Upon local excitation on the H2TPP molecule, an ultrafast energy transfer process occurs from H2TPP (SWCNT-H2TPP*) to SWCNT (SWCNT*-H2TPP) within 10 fs. Then, two slower processes corresponding to the energy transfer from H2TPP to SWCNT and hole transfer from H2TPP to SWCNT take place in the 1 ps time scale. The sTDA-xTB-based electronic structure calculation and NAMD simulation results not only match the previous experimental observations from static and transient spectra but also provide more insights into the detailed information on the complex's photoinduced dynamics. Therefore, the sTDA-xTB-based NAMD method is a powerful theoretical tool for studying the ultrafast photoinduced dynamics in large extended systems with a large number of electronically excited states, which could be helpful for the subsequent design of SWCNT-based functional materials.

4.
Toxicol Appl Pharmacol ; 492: 117080, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216834

RESUMO

The survival rates for patients with osteosarcoma (OS) have stagnated over the past few decades. It is essential to find new therapies and drugs. A licensed antipsychotic medication called trifluoperazine (TFP) significantly reduces the growth of several cancers. However, the exact molecular pathways of TFP in OS remain to be discovered. Our research revealed that TFP greatly reduced OS cell migration and growth and caused the arrest of G0/G1 cell cycle. Combined with RNA-Seq data and further research, we confirmed that TFP promoted reactive oxygen species (ROS) production by elevating thioredoxin binding protein (TXNIP) expression to induce mitochondria-dependent apoptosis. Interestingly, we first demonstrated that AKT was an upstream regulatory target of TXNIP in OS cells. Dephosphorylation of AKT led to an increase in TXNIP expression, further elucidating the anticancer mechanism of TFP. In vivo, TFP inhibited subcutaneous OS cell proliferation and induced OS cell apoptosis without noticeable side effects. In conclusion, our findings imply that TFP is a potential treatment for OS.

5.
Adv Sci (Weinh) ; 11(32): e2401173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031549

RESUMO

Ultrasound velocimetry has been widely used for blood flow imaging. However, the flow measurements are constrained to resolve the in-plane 2D flow components when using a 1D transducer array. In this work, an ultrasound speckle decorrelation analysis-based velocimetry (3C-vUS) is proposed for 3D velocity components measurement using a 1D transducer array. The 3C-vUS theory is first derived and validated with numerical simulations and phantom experiments. The in vivo testing results show that 3C-vUS can accurately measure the blood flow 3D-velocity-components of the human carotid artery at arbitrary probe-to-vessel angles throughout the cardiac cycle. With such capability, the 3C-vUS will alleviate the requirement of operators and promote disease screening for blood flow-related disorders.


Assuntos
Artérias Carótidas , Imageamento Tridimensional , Imagens de Fantasmas , Reologia , Transdutores , Ultrassonografia , Humanos , Reologia/métodos , Artérias Carótidas/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Ultrassonografia/instrumentação
6.
Org Lett ; 26(35): 7279-7284, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39024649

RESUMO

A chiral W-shaped fully π-extended double [7]helicene (ED7H) has been synthesized and fully characterized. It displays fluorescence emission (λem = 636 nm) with a quantum yield (Φf) of 0.10. In comparison to its X-shaped and monomict π-extended [7]helicene analogues, enantiopure W-shaped ED7H exhibited superior chiral optical characteristics, including distinct circular dichroism signals from 400 to 650 nm, a good dissymmetric emission factor |glum| of 4 × 10-3, and a circularly polarized luminescence brightness value BCPL of 42 M-1 cm-1.

7.
J Chem Educ ; 101(2): 514-520, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-39070090

RESUMO

Single-molecule localization microscopy (SMLM) has revolutionized our ability to visualize cellular structures, offering unprecedented detail. However, the intricate biophysical principles that underlie SMLM can be daunting for newcomers, particularly undergraduate and graduate students. To address this challenge, we introduce the fundamental concepts of SMLM, providing a solid theoretical foundation. In addition, we have developed an intuitive graphical interface APP that simplifies these core concepts, making them more accessible for students. This APP clarifies how super-resolved images are fitted and highlights the crucial factors determining image quality. Our approach deepens students' understanding of SMLM by combining theoretical instruction with practical learning. This development equips them with the skills to carry out single-molecule super-resolved experiments and explore the microscopic world beyond the diffraction limit.

8.
Sci Rep ; 14(1): 12765, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834645

RESUMO

Blood flow infections (BSIs) is common occurrences in intensive care units (ICUs) and are associated with poor prognosis. The study aims to identify risk factors and assess mortality among BSI patients admitted to the ICU at Shanghai Ruijin hospital north from January 2022 to June 2023. Additionally, it seeks to present the latest microbiological isolates and their antimicrobial susceptibility. Independent risk factors for BSI and mortality were determined using the multivariable logistic regression model. The study found that the latest incidence rate of BSI was 10.11%, the mortality rate was 35.21% and the mean age of patients with BSI was 74 years old. Klebsiella pneumoniae was the predominant bacterial isolate. Logistic multiple regression revealed that tracheotomy, tigecycline, gastrointestinal bleeding, shock, length of hospital stay, age and laboratory indicators (such as procalcitonine and hemoglobin) were independent risk factors for BSI. Given the elevated risk associated with use of tracheotomy and tigecycline, it underscores the importance of the importance of cautious application of tracheostomy and empirical antibiotic management strategies. Meanwhile, the independent risk factors of mortality included cardiovascular disease, length of hospital stay, mean platelet volume (MPV), uric acid levels and ventilator. BSI patients exhibited a significant decrease in platelet count, and MPV emerged as an independent factor of mortality among them. Therefore, continuous monitoring of platelet-related parameters may aid in promptly identifying high-risk patients and assessing prognosis. Moreover, monitoring changes in uric acid levels may serve as an additional tool for prognostic evaluation in BSI patients.


Assuntos
Bacteriemia , Unidades de Terapia Intensiva , Centros de Atenção Terciária , Humanos , China/epidemiologia , Masculino , Idoso , Fatores de Risco , Feminino , Pessoa de Meia-Idade , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Tempo de Internação , Incidência , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Adulto
9.
IEEE Trans Cybern ; 54(5): 2784-2797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37713227

RESUMO

Robotic rigid contact-rich manipulation in an unstructured dynamic environment requires an effective resolution for smart manufacturing. As the most common use case for the intelligence industry, a lot of studies based on reinforcement learning (RL) algorithms have been conducted to improve the performances of single peg-in-hole assembly. However, existing RL methods are difficult to apply to multiple peg-in-hole issues due to more complicated geometric and physical constraints. In addition, previously limited solutions for multiple peg-in-hole assembly are hard to transfer into real industrial scenarios flexibly. To effectively address these issues, this work designs a novel and more challenging multiple peg-in-hole assembly setup by using the advantage of the Industrial Metaverse. We propose a detailed solution scheme to solve this task. Specifically, multiple modalities, including vision, proprioception, and force/torque, are learned as compact representations to account for the complexity and uncertainties and improve the sample efficiency. Furthermore, RL is used in the simulation to train the policy, and the learned policy is transferred to the real world without extra exploration. Domain randomization and impedance control are embedded into the policy to narrow the gap between simulation and reality. Evaluation results demonstrate the effectiveness of the proposed solution, showcasing successful multiple peg-in-hole assembly and generalization across different object shapes in real-world scenarios.

10.
Angew Chem Int Ed Engl ; 63(5): e202315300, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38085965

RESUMO

Photocatalytic CO2 reduction is one of the best solutions to solve the global energy crisis and to realize carbon neutralization. The tetradentate phosphine-bipyridine (bpy)-phosphine (PNNP)-type Ir(III) photocatalyst, Mes-IrPCY2, was reported with a high HCOOH selectivity but the photocatalytic mechanism remains elusive. Herein, we employ electronic structure methods in combination with radiative, nonradiative, and electron transfer rate calculations, to explore the entire photocatalytic cycle to either HCOOH or CO, based on which a new mechanistic scenario is proposed. The catalytic reduction reaction starts from the generation of the precursor metal-to-ligand charge transfer (3 MLCT) state. Subsequently, the divergence happens from the 3 MLCT state, the single electron transfer (SET) and deprotonation process lead to the formation of one-electron-reduced species and Ir(I) species, which initiate the reduction reaction to HCOOH and CO, respectively. Interestingly, the efficient occurrence of proton or electron transfer reduces barriers of critical steps. In addition, nonadiabatic transitions play a nonnegligible role in the cycle. We suggest a lower free-energy barrier in the reaction-limiting step and the very efficient SET in 3 MLCT are cooperatively responsible for a high HCOOH selectivity. The gained mechanistic insights could help chemists to understand, regulate, and design photocatalytic CO2 reduction reaction of similar function-integrated molecular photocatalyst.

11.
J Hazard Mater ; 465: 133248, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147752

RESUMO

ß-cyclocitral is one of the major compounds in cyanobacterial volatile organic compound (VOCs) and can poison other aquatic organisms. To investigate the effect of ß-cyclocitral on cyanobacterial-grazer interactions, Daphnia sinensis was fed Microcystis aeruginosa and exposed to ß-cyclocitral. Our present study demonstrated that M. aeruginosa could significantly inhibit D. sinensis grazing. And the grazing inhibition by Microcystis aeruginosa results from the suppression of feeding rate, heart rate, thoracic limb activity and swimming speed of D. sinensis. In addition, M. aeruginosa could also induce intestinal peristalsis and emptying in D. sinensis. Interestingly, our present study found that the exposure to ß-cyclocitral could mimic a range of phenotypes induced by M. aeruginosa in D. sinensis. These results suggested that M. aeruginosa could release ß-cyclocitral to inhibit Daphnia grazing. To further examine the toxic mechanism of ß-cyclocitral in Daphnia, several in vivo and in vitro experiments displayed that ß-cyclocitral was a novel inhibitor of acetylcholinesterase (AChE). It could induce the accumulation of acetylcholine (ACh) by inhibiting AchE activity in D. sinensis. High level of endogenous Ach could inhibit feeding rate and induce intestinal peristalsis and emptying in D. sinensis.


Assuntos
Aldeídos , Cianobactérias , Diterpenos , Microcystis , Animais , Daphnia , Acetilcolinesterase
12.
J Chem Theory Comput ; 19(23): 8491-8522, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37984502

RESUMO

Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.

13.
J Phys Chem Lett ; 14(44): 10025-10031, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37906639

RESUMO

Both DFT and TD-DFT methods are used to elaborate on the excited-state properties and dual-emission mechanism of a thiolate-protected Au42 nanocluster. A three-state model (S0, S1, and T1) is proposed with respect to the results. The intersystem crossing (ISC) process from S1 to T1 benefits from a small reorganization energy due to the similar geometric structures of S1 and T1. However, the ISC process is suppressed by relatively small spin-orbit coupling resulting from the similarity of the electronic structures of S1 and T1. As a result of the counterbalance, the ISC rate is comparable with the fluorescence emission rate. In the T1 state, the phosphorescence emission prevails the reverse ISC process back to the S1 state. Taken together, fluorescence and phosphorescence are achieved simultaneously. The present work provides deep mechanistic insights to aid the rational design of NIR dual-emissive metal nanoclusters.

14.
Phys Chem Chem Phys ; 25(43): 29603-29613, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877743

RESUMO

"Carbene-metal(I)-amide" (CMA) complexes have garnered significant attention due to their remarkable properties and potential TADF applications in organic electronics. However, the atomistic working mechanism is still elusive. Herein, we chose two CMA complexes, i.e., cyclic (alkyl)(amino) carbene-copper[gold](I)-carbazole (CAAC-Cu[Au]-Cz), and employed both DFT and TD-DFT methods, in combination with radiative and nonradiative rate calculations, to investigate geometric and electronic structures of these two complexes in the ground and excited states, including orbital compositions, electronic transitions, absorption and emission spectra, and the luminescence mechanism. It is found that the coplanar or perpendicular conformations are coexistent in the ground state (S0), the lowest excited singlet state (S1), and the triplet state (T1). Both the coplanar and perpendicular S1 and T1 states have similar ligand-to-ligand charge transfer (LLCT) character between CAAC and Cz, and some charge-transfer character between metal atoms and ligands, which is beneficial to minimize the singlet-triplet energy gaps (ΔEST) and increase the spin-orbit coupling (SOC). An interesting three-state (S0, S1, T1) model involving two regions (coplanar and perpendicular) is proposed to rationalize the experimental TADF phenomena in the CMA complexes. In addition to the coplanar ones, the perpendicular S1 and T1 states also play a role in promoting the repopulation of the coplanar S1 exciton, which is a primary source for the delayed fluorescence.

15.
J Nanobiotechnology ; 21(1): 355, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775799

RESUMO

BACKGROUND: In recent years, the development of BMSCs-derived exosomes (EXO) for the treatment of osteosarcoma (OS) is a safe and promising modality for OS treatment, which can effectively deliver drugs to tumor cells in vivo. However, the differences in the drugs carried, and the binding of EXOs to other organs limit their therapeutic efficacy. Therefore, improving the OS-targeting ability of BMSCs EXOs and developing new drugs is crucial for the clinical application of targeted therapy for OS. RESULTS: In this study, we constructed a potential therapeutic nano platform by modifying BMSCs EXOs using the bone-targeting peptide SDSSD and encapsulated capreomycin (CAP) within a shell. These constructed nanoparticles (NPs) showed the ability of homologous targeting and bone-targeting exosomes (BT-EXO) significantly promotes cellular endocytosis in vitro and tumor accumulation in vivo. Furthermore, our results revealed that the constructed NPs induced ferroptosis in OS cells by prompting excessive accumulation of reactive oxygen species (ROS), Fe2+ aggregation, and lipid peroxidation and further identified the potential anticancer molecular mechanism of ferroptosis as transduced by the Keap1/Nrf2/GPX4 signaling pathway. Also, these constructed NP-directed ferroptosis showed significant inhibition of tumor growth in vivo with no significant side effects. CONCLUSION: These results suggest that these constructed NPs have superior anticancer activity in mouse models of OS in vitro and in vivo, providing a new and promising strategy for combining ferroptosis-based chemotherapy with targeted therapy for OS.


Assuntos
Neoplasias Ósseas , Exossomos , Ferroptose , Nanopartículas , Osteossarcoma , Animais , Camundongos , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch , Transdução de Sinais , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico
16.
Chemistry ; 29(71): e202302749, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37747101

RESUMO

Recently, chalcogen bond catalysts with telluronium cations have garnered considerable attention in organic reactions. In this work, chalcogen bond catalysis on the bromination reaction of anisole with N-bromosuccinimide (NBS) with the telluronium cationic catalysts has been explored with density functional theory (DFT). The catalytic reaction is divided into two stages: the bromine transfer step and the proton transfer step. Based on the computational results, one can find the rate-determining step is the bromine transfer step. Moreover, the present study elucidates that a stronger chalcogen bond between catalysts and NBS will give better catalytic performance. Additionally, this work also clarified the importance of the electrostatic and polarization effects in the chalcogen bond between the oxygen atom of NBS and the Te atom of the catalyst in this bromination reaction. The electrostatic and polarization effects are significantly influenced by the electron-withdrawing ability of the substitution groups on the catalysts. Moreover, the structure-property relationship between the strength of chalcogen bond, electrostatic effect, polarization effect and catalytic performance are established for the design of more efficient chalcogen bond catalysts.

17.
Adv Sci (Weinh) ; 10(29): e2303696, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37607121

RESUMO

Construction of ordered structures that respond rapidly to environmental stimuli has fascinating possibilities for utilization in energy storage, wearable electronics, and biotechnology. Silicon/carbon (Si/C) anodes with extremely high energy densities have sparked widespread interest for lithium-ion batteries (LIBs), while their implementation is constrained via mechanical structure deterioration, continued growth of the solid electrolyte interface (SEI), and cycling instability. In this study, a piezoelectric Bi0.5 Na0.5 TiO3 (BNT) layer is facilely deposited onto Si/C@CNTs anodes to drive piezoelectric fields upon large volume expansion of Si/C@CNTs electrode materials, resulting in the modulation of interfacial Li+ kinetics during cycling and providing an electrochemical reaction with a mechanically robust and chemically stable substrate. In-depth investigations into theoretical computation, multi-scale in/ex situ characterizations, and finite element analysis reveal that the improved structural stability, suppressed volume variations, and controlled ion transportation are responsible for the improvement mechanism of BNT decorating. These discoveries provide insight into the surface coupling technique between mechanical and electric fields to control the interfacial Li+ kinetics behavior and improve structural stability for alloy-based anodes, which will also spark a great deal attention from researchers and technologists in multifunctional surface engineering for electrochemical systems.

18.
Molecules ; 28(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241962

RESUMO

In this work, we implemented an approximate algorithm for calculating nonadiabatic coupling matrix elements (NACMEs) of a polyatomic system with ab initio methods and machine learning (ML) models. Utilizing this algorithm, one can calculate NACMEs using only the information of potential energy surfaces (PESs), i.e., energies, and gradients as well as Hessian matrix elements. We used a realistic system, namely CH2NH, to compare NACMEs calculated by this approximate PES-based algorithm and the accurate wavefunction-based algorithm. Our results show that this approximate PES-based algorithm can give very accurate results comparable to the wavefunction-based algorithm except at energetically degenerate points, i.e., conical intersections. We also tested a machine learning (ML)-trained model with this approximate PES-based algorithm, which also supplied similarly accurate NACMEs but more efficiently. The advantage of this PES-based algorithm is its significant potential to combine with electronic structure methods that do not implement wavefunction-based algorithms, low-scaling energy-based fragment methods, etc., and in particular efficient ML models, to compute NACMEs. The present work could encourage further research on nonadiabatic processes of large systems simulated by ab initio nonadiabatic dynamics simulation methods in which NACMEs are always required.

19.
Phys Chem Chem Phys ; 25(8): 6454-6460, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779957

RESUMO

One recent experimental study reported a Ir(III) complex with thermally activated delayed fluorescence (TADF) phenomenon in solution, but its luminescent mechanism is elusive. In this work, we combined density functional theory (DFT), time-dependent DFT (TDDFT) and multi-state complete active space second-order perturbation theory (MS-CASPT2) methods to investigate excited-state properties, photophysics, and emission mechanism of this Ir(III) complex. Two main absorption bands observed in experiments can be attributed to the electronic transition from the S0 state to the S1 and S2 states; while, the fluorescence and phosphorescence are generated from the S1 and T1 states, respectively. Both the S1 and T1 states have clear metal-to-ligand charge transfer (MLCT) character. The present computational results reveal a three-state model including the S0, S1 and T1 states to rationalize the TADF behavior. The small energy gap between the S1 and T1 states benefits the forward and reverse intersystem crossing (ISC and rISC) processes. At 300 K, the rISC rate is five orders of magnitude larger than the phosphorescence rate therefore enabling TADF. At 77 K, the rISC rate is sharply decreased but remains close to the phosphorescence rate; therefore, in addition to the phosphorescence, the delayed fluorescence could also contribute to the experimental emission. The estimated TADF lifetime agrees well with experiments, 9.80 vs. 6.67 µs, which further verifies this three-state model.

20.
J Chem Phys ; 158(4): 044110, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725521

RESUMO

Recently, we developed a low-scaling Multi-Layer Energy-Based Fragment (MLEBF) method for accurate excited-state calculations and nonadiabatic dynamics simulations of nonbonded fragment systems. In this work, we extend the MLEBF method to treat covalently bonded fragment ones. The main idea is cutting a target system into many fragments according to chemical properties. Fragments with dangling bonds are first saturated by chemical groups; then, saturated fragments, together with the original fragments without dangling bonds, are grouped into different layers. The accurate total energy expression is formulated with the many-body energy expansion theory, in combination with the inclusion-exclusion principle that is used to delete the contribution of chemical groups introduced to saturate dangling bonds. Specifically, in a two-layer MLEBF model, the photochemically active and inert layers are calculated with high-level and efficient electronic structure methods, respectively. Intralayer and interlayer energies can be truncated at the two- or three-body interaction level. Subsequently, through several systems, including neutral and charged covalently bonded fragment systems, we demonstrate that MLEBF can provide accurate ground- and excited-state energies and gradients. Finally, we realize the structure, conical intersection, and path optimizations by combining our MLEBF program with commercial and free packages, e.g., ASE and SciPy. These developments make MLEBF a practical and reliable tool for studying complex photochemical and photophysical processes of large nonbonded and bonded fragment systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...