Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
1.
Front Public Health ; 12: 1457266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253287

RESUMO

Background: Hybrid immunity (a combination of natural and vaccine-induced immunity) provides additional immune protection against the coronavirus disease 2019 (COVID-19) reinfection. Today, people are commonly infected and vaccinated; hence, hybrid immunity is the norm. However, the mitigation of the risk of Omicron variant reinfection by hybrid immunity and the durability of its protection remain uncertain. This meta-analysis aims to explore hybrid immunity to mitigate the risk of Omicron variant reinfection and its protective durability to provide a new evidence-based basis for the development and optimization of immunization strategies and improve the public's awareness and participation in COVID-19 vaccination, especially in vulnerable and at-risk populations. Methods: Embase, PubMed, Web of Science, Chinese National Knowledge Infrastructure, and Wanfang databases were searched for publicly available literature up to 10 June 2024. Two researchers independently completed the data extraction and risk of bias assessment and cross-checked each other. The Newcastle-Ottawa Scale assessed the risk of bias in included cohort and case-control studies, while criteria recommended by the Agency for Health Care Research and Quality (AHRQ) evaluated cross-sectional studies. The extracted data were synthesized in an Excel spreadsheet according to the predefined items to be collected. The outcome was Omicron variant reinfection, reported as an Odds Ratio (OR) with its 95% confidence interval (CI) and Protective Effectiveness (PE) with 95% CI. The data were pooled using a random- or fixed-effects model based on the I2 test. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Results: Thirty-three articles were included. Compared with the natural immunity group, the hybrid immunity (booster vaccination) group had the highest level of mitigation in the risk of reinfection (OR = 0.43, 95% CI:0.34-0.56), followed by the complete vaccination group (OR = 0.58, 95% CI:0.45-0.74), and lastly the incomplete vaccination group (OR = 0.64, 95% CI:0.44-0.93). Compared with the complete vaccination-only group, the hybrid immunity (complete vaccination) group mitigated the risk of reinfection by 65% (OR = 0.35, 95% CI:0.27-0.46), and the hybrid immunity (booster vaccination) group mitigated the risk of reinfection by an additional 29% (OR = 0.71, 95% CI:0.61-0.84) compared with the hybrid immunity (complete vaccination) group. The effectiveness of hybrid immunity (incomplete vaccination) in mitigating the risk of reinfection was 37.88% (95% CI, 28.88-46.89%) within 270-364 days, and decreased to 33.23%% (95% CI, 23.80-42.66%) within 365-639 days; whereas, the effectiveness after complete vaccination was 54.36% (95% CI, 50.82-57.90%) within 270-364 days, and the effectiveness of booster vaccination was 73.49% (95% CI, 68.95-78.04%) within 90-119 days. Conclusion: Hybrid immunity was significantly more protective than natural or vaccination-induced immunity, and booster doses were associated with enhanced protection against Omicron. Although its protective effects waned over time, vaccination remains a crucial measure for controlling COVID-19. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier, CRD42024539682.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Reinfecção , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Reinfecção/imunologia , Reinfecção/prevenção & controle , Reinfecção/virologia , SARS-CoV-2/imunologia , Vacinação , Imunidade Adaptativa
2.
Int Immunopharmacol ; 142(Pt B): 113159, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303541

RESUMO

BACKGROUND: The role of BMAL1 in various diseases remains unclear, particularly its impact on sepsis-induced acute kidney injury (AKI). This study aims to investigate the role of BMAL1 in sepsis-induced AKI and its potential effects on cell ferroptosis. Initially, we assessed BMAL1 expression levels in mice treated with sepsis-induced AKI (via LPS injection) and in LPS-stimulated renal tubular epithelial cells. Subsequently, we explored the correlation between BMAL1 and ferroptosis using sequencing technology, validating our findings throughout experimental approaches. To further elucidate BMAL1's specific effects on AKI-related ferroptosis, we constructed BMAL1 overexpression models in mice and cells, analysing its impact on AKI and ferroptosis both in vivo and in vitro. Furthermore, using transcriptome sequencing technology, we identified key BMAL1-regulated genes and their associated biological pathways, validating these findings through in vivo and in vitro experiments. RESULTS: Our findings indicate decreased BMAL1 expression in sepsis-induced AKI. BMAL1 overexpression effectively mitigated renal tubular injury by reducing ferroptosis levels in renal tubular epithelial cells. Using transcriptome sequencing and ChIP-qPCR technology, we identified YAP as a target of BMAL1. The overexpression of BMAL1 significantly reduced the transcriptional activity of YAP and inhibited the Hippo signalling pathway. Treatment with the Hippo inhibitor Verteporfin (VP) reversed the BMAL1-downregulation-induced damage. Additionally, our study revealed that YAP positively regulates ACSL4 gene expression and its downstream signalling pathways. CONCLUSION: This study demonstrates that BMAL1 overexpression alleviates renal tubular epithelial cell injury and ferroptosis by inhibiting YAP expression and the Hippo pathway, thereby exerting protective effects in sepsis-induced AKI. These findings underscore the therapeutic potential of targeting BMAL1 in managing sepsis-induced AKI.

3.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(7): 764-767, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39223894

RESUMO

Blood purification is one of the commonly used techniques for the rescue of critically ill patients, which is used for acute and chronic kidney injury caused by various causes and renal replacement therapy (RRT) for a variety of critical diseases. Its main working principle is to drain the human blood into a variety of dialyzers through the artificial tube, exchange substances through a variety of ways, and remove harmful substances and some metabolites from patients' body. Then the purified blood is transfused back to the body, so as to maintain the patient's internal environment relatively stable. At present, there are different models of hemodialysis machines in clinical practice, but they are bulky and unable to move, and the method of heat dissipation is single, which cannot meet the needs of hemodialysis treatment in transport patients. Therefore, the medical staff of the Second Affiliated Hospital of Zunyi Medical University designed and developed a hemodialysis machine, which is suitable for patients who demand hemodialysis treatment during transport, and obtained the National Invention Patent of China (ZL 2020 1 0864737.3). The hemodialysis machine comprises a main body of the hemodialysis machine and a mobile vehicle. The main body of the hemodialysis machine is placed in the bottom of the mobile vehicle, and a protective cylinder with fixed airbags is designed around the main body of the hemodialysis machine. The fixed airbag is connected to the air storage tank through the pipeline, the air storage tank is connected to the Venturi tube through the control valve, and the throat of the Venturi tube is connected to the disinfection tank and cooling water tank. The outlet end of the Venturi tube is connected with the cooling pipe inside the main part of the hemodialysis machine and the sprinkler head placed on the top of the main body. By adding a mobile vehicle and designing an airbag and protective cylinder, the hemodialysis machine can be applied to the hemodialysis treatment during the transportation of patients. By designing the heat dissipation pipe, the main body of the hemodialysis machine can be cooled, the temperature of the hemodialysis machine can be reduced, and the hemodialysis machine can still work when the fan is damaged. By designing the sprinkler head, it is convenient to automatically disinfect the main screen and control keys of the hemodialysis machine, reduce the risk of cross infection of medical staff in the operation, and increase the safety and practicability of the hemodialysis machine. The hemodialysis machine is convenient, safe and efficient, which can be widely used in the hemodialysis treatment during transported patient, and is worthy of clinical promotion.


Assuntos
Desenho de Equipamento , Diálise Renal , Transporte de Pacientes , Diálise Renal/instrumentação , Diálise Renal/métodos , Humanos , Transporte de Pacientes/métodos
4.
Zool Res ; 45(5): 1147-1160, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39257377

RESUMO

Horseshoe bats (genus Rhinolophus, family Rhinolophidae) represent an important group within chiropteran phylogeny due to their distinctive traits, including constant high-frequency echolocation, rapid karyotype evolution, and unique immune system. Advances in evolutionary biology, supported by high-quality reference genomes and comprehensive whole-genome data, have significantly enhanced our understanding of species origins, speciation mechanisms, adaptive evolutionary processes, and phenotypic diversity. However, genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data, with only a single published genome of R. ferrumequinum currently available. In this study, we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat ( R. affinis). Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae. Notably, we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway, DNA repair, and apoptosis, which displayed signs of rapid evolution. In addition, we observed an expansion of the major histocompatibility complex class II (MHC-II) region and a higher copy number of the HLA- DQB2 gene in horseshoe bats compared to other chiropteran species. Based on whole-genome resequencing and population genomic analyses, we identified multiple candidate loci (e.g., GLI3) associated with variations in echolocation call frequency across R. affinis subspecies. This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.


Assuntos
Quirópteros , Ecolocação , Genoma , Animais , Quirópteros/genética , Quirópteros/virologia , Quirópteros/fisiologia , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , Cromossomos/genética
5.
Curr Med Chem ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39229985

RESUMO

BACKGROUND: Parkinson's disease (PD) is an irreversible, progressive disorder that profoundly impacts both motor and non-motor functions, thereby significantly diminishing the individual's quality of life. Dihydrosinularin (DHS), a natural bioactive molecule derived from soft corals, exhibits low cytotoxicity and anti-inflammatory properties. However, the therapeutic effects of DHS on neurotoxins and PD are currently unknown. OBJECTIVE: This study investigated whether DHS could mitigate 6-hydroxydopamine (6- OHDA)-induced neurotoxicity and explored the role of neuroprotective PI3K downstream signaling pathways, including that of AKT, ERK, JNK, BCL2, and NFκB, in DHS- mediated neuroprotection. METHOD: We treated the human neuroblastoma cell line, SH-SY5Y, with the neurotoxin 6-OHDA to establish a cellular model of PD. Meanwhile, we assessed the anti-apoptotic and neuroprotective properties of DHS through cell viability, apoptosis, and immunostaining assays. Furthermore, we utilized the PI3K inhibitor LY294002 to validate the therapeutic target of DHS. RESULTS: Based on the physicochemical properties of DHS, it can be inferred that it has promising oral bioavailability and permeability across the blood-brain barrier (BBB). It was demonstrated that DHS upregulates phosphorylated AKT and ERK while downregulating phosphorylated JNK. Consequently, this enhances the expression of BCL2, which exerts a protective effect on neuronal cells by inhibiting caspase activity and preventing cell apoptosis. The inhibition of PI3K significantly reduced the relative protective activity of DHS in 6-OHDA-induced neurotoxicity, suggesting that the neuroprotective effects of DHS are mediated through the activation of PI3K signaling. CONCLUSION: By investigating the mechanisms involved in 6-OHDA-induced neurotoxicity, we provided evidence concerning the therapeutic potential of DHS in neuroprotection. Further research into DHS and its mechanisms of action holds promise for developing novel therapeutic strategies for PD.

6.
Comput Methods Programs Biomed ; 256: 108392, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39226842

RESUMO

A deep understanding of neuron structure and function is crucial for elucidating brain mechanisms, diagnosing and treating diseases. Optical microscopy, pivotal in neuroscience, illuminates neuronal shapes, projections, and electrical activities. To explore the projection of specific functional neurons, scientists have been developing optical-based multimodal imaging strategies to simultaneously capture dynamic in vivo signals and static ex vivo structures from the same neuron. However, the original position of neurons is highly susceptible to displacement during ex vivo imaging, presenting a significant challenge for integrating multimodal information at the single-neuron level. This study introduces a graph-model-based approach for cell image matching, facilitating precise and automated pairing of sparsely labeled neurons across different optical microscopic images. It has been shown that utilizing neuron distribution as a matching feature can mitigate modal differences, the high-order graph model can address scale inconsistency, and the nonlinear iteration can resolve discrepancies in neuron density. This strategy was applied to the connectivity study of the mouse visual cortex, performing cell matching between the two-photon calcium image and the HD-fMOST brain-wide anatomical image sets. Experimental results demonstrate 96.67% precision, 85.29% recall rate, and 90.63% F1 Score, comparable to expert technicians. This study builds a bridge between functional and structural imaging, offering crucial technical support for neuron classification and circuitry analysis.


Assuntos
Neurônios , Animais , Camundongos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Microscopia/métodos , Reconhecimento Automatizado de Padrão , Algoritmos , Imagem Multimodal/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem
7.
Patterns (N Y) ; 5(8): 101007, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39233689

RESUMO

Reconstructing neuronal morphology is vital for classifying neurons and mapping brain connectivity. However, it remains a significant challenge due to its complex structure, dense distribution, and low image contrast. In particular, AI-assisted methods often yield numerous errors that require extensive manual intervention. Therefore, reconstructing hundreds of neurons is already a daunting task for general research projects. A key issue is the lack of specialized training for challenging regions due to inadequate data and training methods. This study extracted 2,800 challenging neuronal blocks and categorized them into multiple density levels. Furthermore, we enhanced images using an axial continuity-based network that improved three-dimensional voxel resolution while reducing the difficulty of neuron recognition. Comparing the pre- and post-enhancement results in automatic algorithms using fluorescence micro-optical sectioning tomography (fMOST) data, we observed a significant increase in the recall rate. Our study not only enhances the throughput of reconstruction but also provides a fundamental dataset for tangled neuron reconstruction.

8.
mSphere ; : e0055124, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39345123

RESUMO

The discovery of severe acute respiratory syndrome-coronavirus-2-like and Middle East respiratory syndrome-coronavirus-like viruses in Malayan pangolins has raised concerns about their potential role in the spread of zoonotic diseases. Herein, we describe the isolation and whole-genome sequencing of potentially zoonotic two bacterial pathogens from diseased Malaysian pangolins (Manis javanica)-Corynebacterium ulcerans and Erysipelothrix sp. The newly identified species were designated as C. ulcerans P69 and Erysipelothrix sp. P66. C. ulcerans P69 exhibited 99.2% whole-genome nucleotide identity to human bacterial isolate 4940, suggesting that it might have zoonotic potential. Notably, C. ulcerans P69 lacked the diphtheria toxin (tox) gene that is widely used in vaccines to protect humans from corynebacterial infection, which suggests that the current vaccine may be of limited efficacy against this pangolin strain. C. ulcerans P69 also contains other known virulence-associated genes such as pld and exhibits resistance to several antibiotics (erythromycin, clindamycin, penicillin G, gentamicin, tetracycline), which may affect its effective control. Erysipelothrix sp. P66 was closely related to Erysipelothrix sp. strain 2-related strains, exhibiting 98.8% whole-genome nucleotide identity. This bacterium is lethal in mice, and two commercial vaccines failed to protect its challenge, such that it could potentially pose a threat to the swine industry. Overall, this study highlights that, in addition to viruses, pangolins harbor bacteria that may pose a potential threat to humans and domestic animals, and which merit attention. IMPORTANCE: This study firstly reports the presence of two potentially zoonotic bacteria, Corynebacterium ulcerans and Erysipelothrix sp., in diseased Malaysian pangolins collected in 2019. The pangolin C. ulcerans is lethal in mice and resists many antibiotics. It clustered with a lethal human strain but lacked the diphtheria toxin gene. Diphtheria toxin is widely used as a vaccine around the world to protect humans from the infection of corynebacteria. The lack of the tox gene suggests that the current vaccine may be of limited efficacy against this pangolin strain. The pangolin Erysipelothrix sp. is the sister clade of Erysipelothrix rhusiopathiae. It is lethal in mice, and two commercial vaccines failed to protect the mice against challenge with the pangolin Erysipelothrix sp., such that this strain could potentially pose a threat to the swine industry. These findings emphasize the potential threat of pangolin bacteria.

9.
Environ Pollut ; 361: 124729, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147228

RESUMO

Autism spectrum disorder (ASD) is a developmental disorder with symptoms that range from social and communication impairments to restricted interests and repetitive behavior and is the 4th most disabling condition for children aged 5-14. Risk factors of ASD are not fully understood. Environmental risk factors are believed to play a significant role in the ASD epidemic. Research focusing on air pollution exposure as an early-life risk factor of autism is growing, with numerous studies finding associations of traffic and industrial emissions with an increased risk of ASD. One of the possible mechanisms linking autism and air pollution exposure is metabolic dysfunction. However, there were no consensus about the key metabolic pathways and corresponding metabolite signatures in mothers and children that are altered by air pollution exposure and cause the ASD. Therefore, we performed a review of published papers examining the metabolomic signatures and metabolic pathways that are associated with either air pollution exposure or ASD risk in human studies. In conclusion, we found that dysregulated lipid, fatty acid, amino acid, neurotransmitter, and microbiome metabolisms are associated with both short-term and long-term air pollution exposure and the risk of ASD. These dysregulated metabolisms may provide insights into ASD etiology related to air pollution exposure, particularly during the perinatal period in which neurodevelopment is highly susceptible to damage from oxidative stress and inflammation.

10.
Environ Sci Technol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137304

RESUMO

As the largest iron and steel producer, China still cannot meet its demand of iron and steel only through domestic primary supply in the last few decades. Hence, secondary iron resources are increasingly significant in meeting China's iron supply and demand balance. However, the secondary iron resource availability in China and how it impacts the future supply demand balance were still insufficiently discussed. In this work, we developed a material flow analysis and secondary resources reserve assessment (MFA-SRRA) integrated model, assessed secondary iron resources availability, and conducted a supply demand analysis through nine scenarios for irons in China. The results showed that China's secondary iron reserves will increase from 8.9 Gt in 2021 to 14.04 to 19.01 Gt in 2050. With the increasing secondary iron supply, more than 60% of iron ore as a source of steelmaking can be replaced by 2050. Landfills, as a significant reserve of iron but always ignored, will accumulate 1.42-1.51 Gt secondary iron resources by 2050 and should be noticed to be mined and utilized in the future. Last, we suggest that promoting innovation in landfill mining technology and making sustainable material management policies are urgent to prevent these secondary iron resources from becoming real waste.

11.
Environ Sci Technol ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150153

RESUMO

Recent years have witnessed increasing attempts to track trade flows of critical materials across world regions and along the life cycle for renewable energy and the low carbon transition. Previous studies often had limited spatiotemporal coverage, excluded end-use products, and modeled different life cycle stages as single-layer networks. Here, we integrated material flow analysis and complex network analysis into a multilayer framework to characterize the spatiotemporal and multilayer trade network patterns of the global cobalt cycle from 1988 to 2020. We found substantial growth and notable structural changes in global cobalt trade over the past 30 years. China, Germany, and the United States play pivotal roles in different layers and stages of the global cobalt cycle. The interlayer relationships among alloys, batteries, and materials are robust and continually strengthening, indicating a trend toward synergistic trade. However, cobalt ore-exporting countries are highly concentrated and rarely involved in later life cycle stages, resulting in the weakest relationship between the ore layer and other layers. This causes fluctuations and uncertainty in the global cobalt trade. Our model, linking industrial ecology, supply chain analysis, and network analysis, can be extended to other materials that are critical for the future green transition.

12.
Front Microbiol ; 15: 1396213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149212

RESUMO

Bacterial wilt (BW) is a devastating plant disease caused by the soil-borne bacterium Ralstonia solanacearum species complex (Rssc). Numerous efforts have been exerted to control BW, but effective, economical, and environmentally friendly approaches are still not available. Bacteriophages are a promising resource for the control of bacterial diseases, including BW. So, in this study, a crop BW pathogen of lytic bacteriophage was isolated and named PQ43W. Biological characterization revealed PQ43W had a short latent period of 15 min, 74 PFU/cell of brust sizes, and good stability at a wide range temperatures and pH but a weak resistance against UV radiation. Sequencing revealed phage PQ43W contained a circular double-stranded DNA genome of 47,156 bp with 65 predicted open reading frames (ORFs) and genome annotation showed good environmental security for the PQ43W that no tRNA, antibiotic resistance, or virulence genes contained. Taxonomic classification showed PQ43W belongs to a novel genus of subfamily Kantovirinae under Caudoviricetes. Subsequently, a dose of PQ43W for phage therapy in controlling crop BW was determined: 108 PFU*20 mL per plant with non-invasive irrigation root application twice by pot experiment. Finally, a field experiment of PQ43W showed a significantly better control effect in crop BW than the conventional bactericide Zhongshengmycin. Therefore, bacteriophage PQ43W is an effective bio-control resource for controlling BW diseases, especially for crop cultivation.

13.
Sci Total Environ ; 951: 175148, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39089388

RESUMO

BACKGROUND: Exposure to air pollution has been associated with increased risks of cardiopulmonary diseases, cancer, and mortality, whereas residing near green spaces may reduce the risks. However, limited research explores their combined effect on oxidative stress. METHODS: A total of 251 participants with multi-time measurements were included in the longitudinal-designed study. Personal gaseous air pollutants (CO, NO, NO2, and O3,) and particulate pollution (PM1, PM2.5, and PM10) were measured and followed in two 7-day windows while ambient exposure levels and urine samples were collected simultaneously. Participants' Normalized Difference Vegetation Index (NDVI) was estimated and used to represent greenness exposure. Urinary oxidative stress biomarkers include free malondialdehyde (MDA), total MDA, and 8-hydroxydeoxyguanosine (8-OHdG). Linear mixed-effects models were used to independently and jointly estimate the associations of greenness and air pollution with oxidative stress biomarkers. RESULTS: We found consistent positive associations of personal ozone (O3) exposure with 8-OHdG percent changes, and this association was modified by gender and outdoor activity frequency. Consistent positive associations of personal lag 2-day carbon monoxide (CO) exposure with the percent changes of the three oxidative stress biomarkers were significant. We additionally observed that individuals who lived in greener areas had lower levels of urinary-free and total MDA. Participants in the highest NDVI tertile had 0.38 and 0.46 lower free and total MDA levels, [95 % CI: (-0.70, -0.05) and (-0.78, -0.13)], compared to the lowest NDVI tertile. There was also evidence indicating the modification effects by area, education, and outdoor activity frequency on associations between NDVI exposure and creatinine adjusted free MDA (all Pfor interaction < 0.05). Additional greenness modification effects on personal O3 exposure with urinary 8-OHdG was observed. CONCLUSION: Our study provides biological evidence of the modification effect of the built environment on the impact of air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Estresse Oxidativo , Humanos , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Poluentes Atmosféricos/análise , Masculino , Feminino , Pequim , Adulto , Material Particulado/análise , Biomarcadores/urina , Pessoa de Meia-Idade , Monitoramento Ambiental , 8-Hidroxi-2'-Desoxiguanosina , Estudos Longitudinais
14.
Artigo em Inglês | MEDLINE | ID: mdl-39129292

RESUMO

BACKGROUND: Cisplatin is a key therapeutic agent for bladder cancer, yet the emergence of cisplatin resistance presents a significant clinical challenge. OBJECTIVE: This study aims to investigate the potential and mechanisms of cyclanoline (Cyc) in overcoming cisplatin resistance. METHODS: Cisplatin-resistant T24 and BIU-87 cell models (T24/DR and BIU-87/DR) were established by increasing gradual concentration. Western Blot (WB) assessed the phosphorylation of STAT3, JAK2, and JAK3. T24/DR and BIU-87/DR cell lines were treated with selective STAT3 phosphorylation modulators, and cell viability was evaluated by CCK-8. Cells were subjected to cisplatin, Cyc, or their combination. Immunofluorescence (IHC) examined p-STAT3 expression. Protein and mRNA levels of apoptosis-related and cell cycle-related factors were measured. Changes in proliferation, invasion, migration, apoptosis, and cell cycle were monitored. In vivo, subcutaneous tumor transplantation models in nude mice were established, assessing tumor volume and weight. Changes in bladder cancer tissues were observed through HE staining, and the p-STAT3 was assessed via WB and IHC. RESULTS: Cisplatin-resistant cell lines were successfully established, demonstrating increased phosphorylation of STAT3, JAK2, and JAK3. Cisplatin or Cyc treatment decreased p-STAT3, inhibited invasion and migration, and induced apoptosis and cell cycle arrest in the G0/G1 phase in vitro. In vivo, tumor growth was significantly suppressed, with extensive tumor cell death. IHC and WB consistently showed a substantial downregulation of STAT3 phosphorylation. These changes were more pronounced when cisplatin and Cyc were administered in combination. CONCLUSION: Cyc reverses cisplatin resistance via JAK/STAT3 inhibition in bladder cancer, offering a potential clinical strategy to enhance cisplatin efficacy in treating bladder cancer.

15.
Environ Sci Pollut Res Int ; 31(38): 50983-50999, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106012

RESUMO

In this study, we synthesized MOF/COF hybrid material (NH2-MOF-5/MCOF) by integrating NH2-MOF-5 (Zn) with a melamine-based COF (MCOF) to target the photocatalytic degradation of methylene blue (MB) dye. Characterization using SEM, XRD, XPS, FT-IR, and UV-DRS confirmed the synthesized MOF/COF hybrid's exceptional photocatalytic performance under visible light. The addition of H2O2 significantly enhanced the photocatalytic degradation, achieving removal rates of 90%, 92%, and 57% for 11.75 mg L-1, 30 mg L-1, and 83 mg L-1 of MB, respectively. Kinetic studies revealed first-order kinetics, with a rate constant nearly 3.5 times higher with added H2O2. We proposed a comprehensive photocatalytic mechanism elucidated through energy band structure analysis and scavenger tests. Our findings revealed the formation of a heterojunction between NH2-MOF-5 and MCOF, which mitigates electron-hole recombination, with ∙OH identified as the principal species governing methylene blue degradation. Moreover, the NH2-MOF-5/MCOF hybrid displayed excellent reusability and chemical stability over six cycles. Notably, this H2O2-assisted hybrid material demonstrated the removal of 99% of ibuprofen, a pharmaceutical drug, showcasing its broad applicability in removing organic contaminants in aqueous solutions, thereby holding great promise for wastewater treatment.


Assuntos
Peróxido de Hidrogênio , Luz , Azul de Metileno , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Catálise , Azul de Metileno/química , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Triazinas/química , Fotólise , Cinética
16.
Nat Commun ; 15(1): 7291, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181885

RESUMO

Tandem repeats (TRs) are genomic regions that tandemly change in repeat number, which are often multiallelic. Their characteristics and contributions to gene expression and quantitative traits in rice are largely unknown. Here, we survey rice TR variations based on 231 genome assemblies and the rice pan-genome graph. We identify 227,391 multiallelic TR loci, including 54,416 TR variations that are absent from the Nipponbare reference genome. Only 1/3 TR variations show strong linkage with nearby bi-allelic variants (SNPs, Indels and PAVs). Using 193 panicle and 202 leaf transcriptomic data, we reveal 485 and 511 TRs act as QTLs independently of other bi-allelic variations to nearby gene expression, respectively. Using plant height and grain width as examples, we identify and validate TRs contributions to rice agronomic trait variations. These findings would enhance our understanding of the functions of multiallelic variants and facilitate rice molecular breeding.


Assuntos
Alelos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Oryza , Locos de Características Quantitativas , Sequências de Repetição em Tandem , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Sequências de Repetição em Tandem/genética , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Fenótipo , Variação Genética
17.
World J Urol ; 42(1): 425, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037613

RESUMO

OBJECTIVES: This study was to investigate the correlation between oxidative balance score (OBS) and the prevalence of kidney stones in the general adult population. MATERIALS AND METHODS: We conducted an analysis using data from the 2007-2018 National Health and Nutrition Examination Survey (NHANES) project, including 17,988 participants. The OBS was computed based on previous research, combining 16 dietary factors and 4 lifestyle factors. Multiple logistic regressions and restricted cubic spline (RCS) regressions were utilized to explore the associations between OBS and kidney stone prevalence. RESULTS: Our analysis included 1,622 adults with kidney stones and 16,366 adults without kidney stones. The average age of participants was 46.86 ± 0.27 years, with 50.72% being male. The median OBS was 22.00 (17.00, 27.00). After adjusting for all covariates, each one-unit increase in OBS was associated with a 3% decrease in kidney stone prevalence (odds ratio [OR] = 0.97 [0.96-0.98], P < 0.001). Moreover, compared to the first quartile, the fourth quartile of OBS (OR = 0.65 [0.50-0.84], P = 0.001) exhibited a negative association with kidney stone prevalence after adjusting for multiple variables. Furthermore, we observed a non-linear negative relationship between OBS and kidney stone prevalence, with inflection points at 18.2 (P for nonlinearity = 0.048). Stratified analysis did not identify any variables significantly affecting the results. CONCLUSION: Our findings indicate that a higher OBS is associated with a decreased prevalence of kidney stones in the general adult population.


Assuntos
Cálculos Renais , Humanos , Cálculos Renais/epidemiologia , Cálculos Renais/metabolismo , Cálculos Renais/química , Masculino , Feminino , Pessoa de Meia-Idade , Prevalência , Adulto , Estresse Oxidativo , Inquéritos Nutricionais , Estudos Transversais
18.
Food Chem ; 460(Pt 1): 140508, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047494

RESUMO

This study aimed to clarify how microclimate diversity altered volatilomics in Cabernet Sauvignon grapes and wines. Four row-oriented vineyards were selected, and metabolites of grapes and wines were determined from separate canopy sides. Results showed that shaded sides received 59% of the solar radiation and experienced 55% of the high-temperature days compared to the exposed sides on average. Grape primary metabolites were slightly affected by the canopy side. Herbaceous aromas were consistently more abundant in grapes and wines from shaded clusters. Heat-stressed canopy sides accelerated terpenoid loss and increased norisoprenoid levels in grapes, while ß-damascenone in north-side wines was 13%-32% higher than that in south-side wines of the east-west vineyard. The northeast-southwest vineyard showed the most notable variation in taste and aroma sensory scores, with four parameters significantly different. There were 32 aroma series identified in wines, and banana, pineapple, and strawberry odors were highly correlated with aroma sensory score.


Assuntos
Frutas , Odorantes , Paladar , Vitis , Compostos Orgânicos Voláteis , Vinho , Vitis/química , Vitis/metabolismo , Vinho/análise , Odorantes/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Frutas/química , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Humanos , Fazendas , Aromatizantes/química , Aromatizantes/análise , Feminino , Masculino
19.
Phytomedicine ; 132: 155855, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043083

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a frequently occurring type of head and neck cancer with a high mortality and morbidity rate. Rhopaloic acid A (RA), a terpenoid derived from sponges, has demonstrated a promising anti-tumor activity, but its effectiveness for treating OSCC remains unknown. PURPOSE: The aim of this study was to investigate whether RA inhibits the growth of OSCC. METHODS: Cell viability was evaluated using CCK-8 assays in OSCC cells (Ca9-22, HSC-3 and SAS) and in normal cells (HGF-1) treated with RA. DAPI staining, AO staining, JC-1 staining and immunofluorescence were used to determine apoptosis, mitochondrial membrane potential and autophagy in RA-treated OSCC cells. Protein expression levels were determined by western blotting. Furthermore, the anti-tumor effect of RA was confirmed in vivo using a zebrafish oral cancer xenotransplantation model. RESULTS: OSCC cells had a significantly reduced viability after RA treatment, but normal cells were not affected. Treatment with RA caused chromatin condensation in OSCC cells, which increased their expression of autophagy- and apoptosis-related proteins. Furthermore, RA caused mitochondrial damage and increased autophagosome formation. Mitophagy was also induced by RA through the JNK/BNIP3/Nix/LC3B pathway. The JNK inhibitor SP600125 prevented both RA-mediated cell death and mitophagy of OSCC cells. A zebrafish xenograft model demonstrated that RA inhibits OSCC growth. CONCLUSION: In conclusion, RA showed a potent anticancer activity in in vitro and in in vivo oral cancer models by promoting mitochondrial damage-induced apoptosis and mitophagy, which suggests that RA may be useful as a novel and effective treatment for OSCC.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Mitocôndrias , Mitofagia , Neoplasias Bucais , Peixe-Zebra , Animais , Neoplasias Bucais/tratamento farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Proteínas de Membrana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia
20.
ACS Omega ; 9(28): 30071-30086, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035943

RESUMO

This review will unveil the development of a new generation of electrochemical sensors utilizing a transition-metal-oxide-based nanocomposite with varying morphology. There has been considerable discussion on the role of transition metal oxide-based nanocomposite, including iron, nickel, copper, cobalt, zinc, platinum, manganese, conducting polymers, and their composites, in electrochemical and biosensing applications. Utilizing these materials to detect glucose and hydrogen peroxide selectively and sensitively with the correct chemical functionalization is possible. These transition metals and their oxide nanoparticles offer a potential method for electrode modification in sensors. Nanotechnology has made it feasible to develop nanostructured materials for glucose and H2O2 biosensor applications. Highly sensitive and selective biosensors with a low detection limit can detect biomolecules at nanomolar to picomolar (10-9 to 10-12 molar) concentrations to assess physiological and metabolic parameters. By mixing carbon-based materials (graphene oxide) with inorganic nanoparticles, nanocomposite biosensor devices with increased sensitivity can be made using semiconducting nanoparticles, quantum dots, organic polymers, and biomolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...