Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sci Rep ; 14(1): 23725, 2024 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390116

RESUMO

The persistent infection of high-risk human papillomavirus (HPV) and the progression of cervical cancer necessitate the involvement of microenvironmental immunity. As cervical lesions advance, there is an observed increase in the infiltration of type 2 (M2) macrophages. However, the precise mechanism driving this increased infiltration of M2 macrophages remains unclear. In this study, we investigated the role of exosomes in polarising M2 macrophages in cervical lesions associated with HPV E6. Through the analysis of bioinformatics data and clinical specimens, we discovered a positive correlation between HPV E6/E7 mRNA copy number and the level of M2 macrophage infiltration. Exosomes derived from HPV E6 overexpressed (HPV E6+) cervical squamous cell carcinoma (CESC) cells were found to induce the polarisation of macrophages towards M2 type. Specifically, miR-204-5p, enriched in HPV E6 + CESC exosomes, was transported into macrophages and triggered M2 macrophage polarisation by inhibiting JAK2. The clinical relevance of exosomal miR-204-5p in the progression of cervical lesions was validated through serum samples from 35 cases. Exosomal miR-204-5p emerges as a critical factor influencing M2 macrophage polarisation and is correlated with the severity of cervical lesions. Consequently, miR-204-5p could be used as a potential treatment and a candidate biomarker for cervical lesions.


Assuntos
Exossomos , Macrófagos , MicroRNAs , Proteínas Oncogênicas Virais , Proteínas Repressoras , Microambiente Tumoral , Neoplasias do Colo do Útero , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Feminino , Exossomos/metabolismo , Exossomos/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Proteínas Oncogênicas Virais/metabolismo , Proteínas Oncogênicas Virais/genética , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/imunologia , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/virologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/imunologia , Janus Quinase 2/metabolismo , Janus Quinase 2/genética
2.
Molecules ; 29(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339338

RESUMO

Cyclotides are plant cyclic peptides with exceptional stability and diverse bioactivity, making them promising candidates for biomedical applications. Therefore, the study of cyclotides has attracted increasing attention in recent years. However, the existing cyclotide detection methods face limitations in sensitivity, accuracy, and reliability. To address these challenges, we developed an integrated strategy using a combination of strong cation exchange chromatography techniques for removing interfering small molecules, Orbitrap Exploris 480 mass spectrometry (OEMS); this is a detection and database searching-based method for cyclotide verification, which greatly improved the sensitivity, accuracy, and reliability of cyclotide identification. This strategy was subsequently employed for cyclotide mapping in Viola with a minute amount of starting tissue, resulting the identification of 65 known and 18 potentially novel cyclotides, which is the largest dataset of cyclotides for Viola philippica. This strategy provided valuable insights into the cyclotide diversity and distribution in V. philippica, with potential applications in drug discovery and other biomedical fields.


Assuntos
Ciclotídeos , Viola , Ciclotídeos/química , Ciclotídeos/análise , Ciclotídeos/isolamento & purificação , Viola/química , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Espectrometria de Massas em Tandem/métodos , Proteínas de Plantas/análise , Proteínas de Plantas/química
3.
Front Pharmacol ; 15: 1423115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104384

RESUMO

Aim: Plant-derived nanovesicles have emerged as potential agents for combating tumors. In this study, we investigated the inhibitory effects of Panax notoginseng-derived nanovesicles (PnNVs) on the proliferation and migration of squamous cell carcinoma. Additionally, we explored the relationship between plant tuber size and the physical properties, composition and bioactivity of these nanovesicles. Methods: We isolated PnNVs from Panax notoginseng tubers of varying sizes: small-sized (s_PnNVs), medium-sized (m_PnNVs) and large-sized (l_PnNVs), and evaluated for size, potential, and morphology. Cellular uptake efficiency was assessed using confocal microscopy and flow cytometry. The ability of different PnNVs to inhibit oral squamous cell carcinoma cells was evaluated using plate cloning, CCK8 assay, and scratch healing assay. Off-target metabolomics was used to compare metabolic compounds of different PnNVs. Results: Our findings revealed that s_PnNVs exhibited lower potential but had the highest cellular uptake efficiency, whereas m_PnNVs were characterized by the smallest size and lowest cellular uptake efficiency. Notably, m_PnNVs demonstrated the most effective inhibition of squamous cell carcinoma growth and migration. Compositional analyses showed that PnNVs were rich in proteins and contained lower levels of RNA, with l_PnNVs having the highest protein content. Furthermore, untargeted metabolomics analysis revealed a significant increase in the expression of specific antitumour-related metabolites in m_PnNVs compared to s_PnNVs and l_PnNVs. Conclusion: Overall, our results underscore the influence of plant tuber size on the bioactivity of the nanovesicles from which they are derived, emphasizing its importance for experimental design and study reproducibility.

4.
Sci Rep ; 14(1): 19966, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198513

RESUMO

Plant-derived nanovesicles (PDNVs) have garnered growing attention in the biomedical field owing to their abundance in plant-derived ribonucleic acids (RNA), proteins, lipids and metabolites. The question about the preservation of PDNVs is a crucial and unavoidable concern in both experiments' settings and their potential clinical application. The objective of this research was to examine the impact of varying storage temperatures on the stability and bioactivity of Rehmannia-derived nanovesicles (RDNVs). The results showed that RDNVs aggregated after 2 weeks of storage period at 4 °C, and the particle size of some RDNVs gradually increased with time, along with the increase of solution potential. After 2 months of storage, all RDNVs exhibited varying levels of aggregation irrespective of storage temperature. The bioactivities of nanovesicles under different temperature storage conditions revealed a gradual decline in cell proliferation inhibition bioactivity over time, significantly lower than that of freshly prepared RDNVs. In contrast, the preservation of anti-migratory activity in RDNVs was found to be more effective when subjected to rapid freezing in liquid nitrogen followed by storage at - 80 °C, as opposed to direct storage at - 80 °C. These findings suggest that temperature alone may not be sufficient in safeguarding the activity and stability of RDNVs, highlighting the necessity for the development of novel protective agents for PDNVs.


Assuntos
Rehmannia , Rehmannia/química , Humanos , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Nanopartículas/química , Temperatura , Armazenamento de Medicamentos , Estabilidade de Medicamentos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Movimento Celular/efeitos dos fármacos
5.
J Craniomaxillofac Surg ; 52(8): 937-947, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003214

RESUMO

It is urgently necessary to clarify the effect of extraction of impacted mandibular third molar (IMTM) on the periodontal tissue of adjacent second molars (ASMs). In this study, the ASM periodontal condition and pathogenic microbes were assessed before IMTM extraction and at 1, 4, 8 and 12 weeks postoperatively. Based on the inclusion and exclusion criteria, our study revealed that IMTM extractions adversely affected distal - periodontal probing depth (dPPD), attachment loss (dAL), plaque index (dPLI) and bleeding on probing (dBOP) within 8 weeks, but these indices gradually normalize after 12 weeks. The subgingival pathogens near the ASMs distal surface, Porphyromonas and Pseudomonas, were significantly increased postoperatively. Moreover, relevance of ASMs clinical indices and subgingival microbes after IMTM extractions was found. In contrast to the situation in chronic periodontitis, the effects of IMTM extraction on dPPD, dAL, dPLI and dBOP of ASMs were mainly correlated with Pseudomonas. Additionally, while the IMTM extractions have adverse distal periodontal indices of ASMs within 8 weeks and increase subgingival pathogens, the modified triangular flap (MTF) had fewer distal periodontal indices and less Pseudomonas. Compared to the traditional envelope flap and triangular flap, the MTF benefits the periodontal health, which could be considered as the priority option for IMTM extractions.


Assuntos
Mandíbula , Microbiota , Dente Serotino , Extração Dentária , Dente Impactado , Humanos , Dente Serotino/cirurgia , Masculino , Dente Impactado/cirurgia , Adulto , Feminino , Mandíbula/cirurgia , Mandíbula/microbiologia , Índice Periodontal , Periodonto/microbiologia , Periodonto/cirurgia , Adulto Jovem , Retalhos Cirúrgicos
6.
Int J Biol Macromol ; 275(Pt 2): 133465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945322

RESUMO

O-carboxymethyl chitosan (O-CMC) is a chitosan derivative produced through the substitution of hydroxyl (-OH) functional groups in glucosamine units with carboxymethyl (-CH2COOH) substituents, effectively addressing the inherent solubility issues of chitosan in aqueous solutions. O-CMC has garnered significant interest due to its enhanced solubility, elevated viscosity, minimal toxicity, and advantageous biocompatibility properties. Furthermore, O-CMC demonstrates antibacterial, antifungal, and antioxidant characteristics, rendering it a promising candidate for various biomedical uses such as wound healing, tissue engineering, anti-tumor therapies, biosensors, and bioimaging. Additionally, O-CMC is well-suited for the fabrication of nanoparticles, hydrogels, films, microcapsules, and tablets, offering opportunities for effective drug delivery systems. This review outlines the distinctive features of O-CMC, offers analyses of advancements and future potential based on current research, examines significant obstacles for clinical implementation, and foresees its ongoing significant impacts in the realm of biomedicine.


Assuntos
Quitosana , Quitosana/química , Quitosana/análogos & derivados , Humanos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Hidrogéis/química , Portadores de Fármacos/química
7.
J Nanobiotechnology ; 22(1): 269, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764018

RESUMO

Symbiotic microbial communities are crucial for human health, and dysbiosis is associated with various diseases. Plant-derived nanovesicles (PDNVs) have a lipid bilayer structure and contain lipids, metabolites, proteins, and RNA. They offer unique advantages in regulating microbial community homeostasis and treating diseases related to dysbiosis compared to traditional drugs. On the one hand, lipids on PDNVs serve as the primary substances that mediate specific recognition and uptake by bacteria. On the other hand, due to the multifactorial nature of PDNVs, they have the potential to enhance growth and survival of beneficial bacterial while simultaneously reducing the pathogenicity of harmful bacteria. In addition, PDNVs have the capacity to modulate bacterial metabolism, thus facilitating the establishment of a harmonious microbial equilibrium and promoting stability within the microbiota. These remarkable attributes make PDNVs a promising therapeutic approach for various conditions, including periodontitis, inflammatory bowel disease, and skin infection diseases. However, challenges such as consistency, isolation methods, and storage need to be addressed before clinical application. This review aims to explore the value of PDNVs in regulating microbial community homeostasis and provide recommendations for their use as novel therapeutic agents for health protection.


Assuntos
Microbiota , Humanos , Plantas , Bactérias/metabolismo , Disbiose/microbiologia , Animais , Nanopartículas/química , Nanoestruturas/química , Periodontite/microbiologia
8.
Front Public Health ; 12: 1370635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655518

RESUMO

Background: The current rate of organ donation in China falls significantly below the global average and the actual demand. Nursing students play a crucial role in supporting and promoting social and public welfare activities. This study primary aims to analyze the levels of knowledge, attitudes, willingness toward organ donation, and attitudes toward death among nursing students, and investigate the mediating role of attitude in the relationship between knowledge and willingness. The secondary aims to identify factors that may influence the willingness. Methods: A convenience sample of nursing students completed online-administered questionnaires measuring the level of knowledge, attitudes, and willingness toward organ donation before and after clinical internship. Spearman correlation and mediation analyses were used for data analyses. Results: Before the clinical internship, there were 435 nursing students who had not yet obtained their degrees and were completing their clinical internships. After the internship, this number decreased to 323. The mean score for knowledge before and after the clinical internship (7.17 before and 7.22 after, with no significant difference), the attitude (4.58 before and 4.36 after, with significant difference), the willingness (12.41% before and 8.67% after, with significant difference), the Death Attitude Profile-Revised (DAP-R) score (94.41 before and 92.56 after, with significant difference). The knowledge indirectly affected nursing students' willingness to organ donation through attitude. Knowledge had a direct and positive impact on attitudes (ß = 1.564). Additionally, nursing students' attitudes positively affected their willingness (ß = 0.023). Attitudes played a mediating role in the relationship between knowledge and willingness (ß = 0.035). Additionally, attitude toward death, fear of death, and acceptance of the concept of escape were found to be correlated with their willingness. Conclusion: Organ donation willingness was found to be low among nursing students. Positive attitudes were identified as a mediating factor between knowledge and willingness. Additionally, DAP-R was a related factor. Therefore, it is recommended to focus on improving knowledge and attitude, as well as providing death education to help nursing students establish a positive attitude toward death. These efforts can contribute to the promotion of organ donation.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Estudantes de Enfermagem , Obtenção de Tecidos e Órgãos , Humanos , Estudantes de Enfermagem/psicologia , Feminino , Masculino , Inquéritos e Questionários , China , Adulto , Adulto Jovem , Atitude Frente a Morte , Atitude do Pessoal de Saúde
9.
J Phys Chem A ; 128(11): 1984-1992, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38446415

RESUMO

Excited-state intramolecular double proton transfer (ESIDPT) has received much attention because of its widespread existence in the life reactions of living organisms, and materials with this property are significant for their special luminescent properties. In this work, the complete active space self-consistent field (CASSCF) and OM2/multireference configuration interaction (OM2/MRCI) methods have been employed to study the static electronic structure calculations of the photochemistry and the possibility of ESIDPT process of hydroxyquinoline benzimidazole (HQB) molecule, along with the nonadiabatic dynamics simulations. The computational results show that the HQB molecule is relaxed to the S1-ENOL minimum after being excited to the Franck-Condon point in the S1 state. Subsequently, during the nonadiabatic deactivation process, the OH···N proton transfer and the twisting of benzimidazole occur before arriving at the single proton transfer conical intersection S1S0-KETO. Finally, the system can either return to the initial ground-state structure S0-ENOL or to the single proton transfer ground-state structure S0-KETO, both of which have almost the same probability. The dynamics simulations also show that no double proton transfer occurs. The excited-state lifetime of HQB is fitted to 1.1 ps, and only 64% of the dynamic trajectories return to the ground state within the 2.0 ps simulation time. We hope the detailed reaction mechanism of the HQB molecule will provide new insights into similar systems.

10.
Proteomics ; 24(19): e2300396, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38522031

RESUMO

The tooth serves as an exemplary model for developmental studies, encompassing epithelial-mesenchymal transition and cell differentiation. The essential factors and pathways identified in tooth development will help understand the natural development process and the malformations of mineralized tissues such as skeleton. The time-dependent proteomic changes were investigated through the proteomics of healthy human molars during embryonic stages, ranging from the cap-to-early bell stage. A comprehensive analysis revealed 713 differentially expressed proteins (DEPs) exhibiting five distinct temporal expression patterns. Through the application of weighted gene co-expression network analysis (WGCNA), 24 potential driver proteins of tooth development were screened, including CHID1, RAP1GDS1, HAPLN3, AKAP12, WLS, GSS, DDAH1, CLSTN1, AFM, RBP1, AGO1, SET, HMGB2, HMGB1, ANP32A, SPON1, FREM1, C8B, PRPS2, FCHO2, PPP1R12A, GPALPP1, U2AF2, and RCC2. Then, the proteomics and transcriptomics expression patterns of these proteins were further compared, complemented by single-cell RNA-sequencing (scRNA-seq). In summary, this study not only offers a wealth of information regarding the molecular intricacies of human embryonic epithelial and mesenchymal cell differentiation but also serves as an invaluable resource for future mechanistic inquiries into tooth development.


Assuntos
Dente Molar , Proteômica , Germe de Dente , Dente Decíduo , Humanos , Germe de Dente/metabolismo , Germe de Dente/embriologia , Proteômica/métodos , Dente Decíduo/metabolismo , Dente Molar/metabolismo , Dente Molar/embriologia , Dente Molar/crescimento & desenvolvimento , Odontogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma/genética , Proteoma/metabolismo , Proteoma/análise
11.
Oral Health Prev Dent ; 22: 63-72, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305424

RESUMO

PURPOSE: Previous surveys have reported that children with vitamin D deficiency were likely to suffer from early childhood caries (ECC). The aim of this systematic review and meta-analysis was to determine 1. whether the status of vitamin D is intrinsically related to the occurrence of ECC and 2. the optimal level of vitamin D for the prevention of ECC. MATERIALS AND METHODS: The database of PubMed, Web of Science, Cochrane, Embase and Google scholar were searched for targeted literature. The eligibility criteria were observational studies in which children with ECC were compared to children without ECC in terms of their vitamin D status. Applying the Newcastle-Ottawa tool, study selection, data extraction, and risk of bias assessment were performed by 2 reviewers independently. Meta-analysis was performed using the Cochrane Collaboration's Review Manager 5.4 software. RESULTS: 501 articles were retrieved from the electronic databases; 11 studies were finally included in systematic review, 10 studies of which were submitted to meta-analysis. The 25(OH)D levels in the ECC group were statistically significantly lower compared with that in the caries-free group (WMD = -13.96, 95% CI: [-19.88,-8.03], p < 0.001), especially in regard to the association between S-ECC and vitamin D (WMD = -18.64, 95% CI: [-20.06,-17.22], p < 0.001). The subgroup analyses in terms of geographical region demonstrated that children with a level of 25(OH)D of 50-75 nmol/l were more likely to have ECC than those with over 75 nmol/l (OR = 1.42, 95% CI: [1.26,1.60], p < 0.001), with data from Asia and Europe combined for analysis Conclusions: The level of vitamin D was lower in children with ECC than in caries-free children, and the correlation between S-ECC and vitamin D was even stronger. The optimal 25(OH)D level for preventing occurrence and development of ECC was ≥ 75 nmol/l. Thus, clinicians should view the development of early caries also from a systemic perspective.


Assuntos
Cárie Dentária , Vitamina D , Criança , Pré-Escolar , Humanos , Suscetibilidade à Cárie Dentária , Cárie Dentária/epidemiologia
12.
J Cell Mol Med ; 28(4): e18130, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332511

RESUMO

The dressing that promotes scarless healing is essential for both normal function and aesthetics after a wound. With a deeper understanding of the mechanisms involved in scar formation during the wound healing process, the ideal dressing becomes clearer and more promising. For instance, the yes-associated transcriptional regulator (YAP) has been extensively studied as a key gene involved in regulating scar formation. However, there has been limited attention given to pectolinarin, a natural flavonoid that may exhibit strong binding affinity to YAP, in the context of scarless healing. In this study, we successfully developed a temperature-sensitive Pluronic@F-127 hydrogel as a platform for delivering pectolinarin to promote scarless wound healing. The bioactive pectolinarin was released from the hydrogel, effectively enhancing endothelial cell migration, proliferation and the expression of angiogenesis-related genes. Additionally, a concentration of 20 µg/mL of pectolinarin demonstrated remarkable antioxidant ability, capable of counteracting the detrimental effects of reactive oxygen species (ROS). Our results from rat wound healing models demonstrated that the hydrogel accelerated wound healing, promoting re-epithelialization and facilitating skin appendage regeneration. Furthermore, we discovered that a concentration of 50 µg/mL of pectolinarin incorporated to the hydrogel exhibited the most favourable outcomes in terms of promoting wound healing and minimizing scar formation. Overall, our study highlights that the significant potential of locally released pectolinarin might substantially inhibit YAP and promoting scarless wound healing.


Assuntos
Cromonas , Cicatriz , Hidrogéis , Ratos , Animais , Cicatriz/patologia , Hidrogéis/farmacologia , Temperatura , Cicatrização
13.
Adv Healthc Mater ; 13(2): e2302280, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37812035

RESUMO

Extracellular vesicles (EVs), lipid-enclosed nanosized membrane vesicles, are regarded as new vehicles and therapeutic agents in intercellular communication. During internal circulation, if EVs are not effectively taken up by recipient cells, they will be cleared as "cellular waste" and unable to deliver therapeutic components. It can be seen that cells uptake EVs are the prerequisite premise for sharing intercellular biological information. However, natural EVs have a low rate of absorption by their recipient cells, off-target delivery, and rapid clearance from circulation, which seriously reduces the utilization rate. Affecting the uptake rate of EVs through engineering technologies is essential for therapeutic applications. Engineering strategies for customizing EV uptake can potentially overcome these limitations and enable desirable therapeutic uses of EVs. In this review, the mechanism and influencing factors of natural EV uptake will be described in detail. Targeting each EV uptake mechanism, the strategies of engineered EVs and their application in diseases will be emphatically discussed. Finally, the future challenges and perspectives of engineered EVs are presented multidimensionally.


Assuntos
Vesículas Extracelulares , Comunicação Celular
14.
Phys Chem Chem Phys ; 25(44): 30679-30686, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37933753

RESUMO

Triazole compounds are important organic systems with excellent electronic properties, which have diagnostic potential in the fields of organic electronics and organic photovoltaics. The important photophysical nature of these systems is the transformation between the enol and keto forms after excited-state proton transfer. In this study, the IR vibrational spectrum, ESIPT mechanism, and excited-state decay dynamics of 2,2'-(1-phenyl-1H-1,2,4-triazole-3,5-diyl)diphenol (ExPh) were explored using electronic structure calculations and non-adiabatic dynamics simulations. Two S1/S0 conical intersections with distinct proton transfer (ESIPT-I and ESIPT-II) involved were obtained. The associated two-dimensional S1 minimum-energy potential energy surface indicated that the dynamical roles of these two S1/S0 conical intersections in the S1 excited-state decay were quite different. The ESIPT-I reaction was more favorable to occur than the ESIPT-II process. Our dynamics simulations supported this hypothesis with the whole trajectories decaying to the ground state via the S1S0-1 conical intersection, which involved the ESIPT-I process. The ESIPT-Involved efficient deactivation pathway could be partially responsible for the decrease in fluorescence emission. These results and ESIPT mechanisms are helpful for understanding the decay pathways of similar systems.

15.
Ann Med ; 55(2): 2282745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37988719

RESUMO

PURPOSE: To investigate the alterations in biometric parameters among Chinese adolescents over an extended period of wearing orthokeratology lenses, as well as the subsequent changes after a one-month cessation of lens usage prior to the secondary lens fitting. METHODS: Twenty-four myopic patients aged 7-14 were enrolled in this 37-month prospective observational study. Ocular biometric parameters were measured in the study. Ocular biometric parameters were assessed, and the utilization of Generalized Estimating Equations (GEE) was employed in the analysis to address the correlation between the two eyes of each participant. RESULTS: The axial length (AL) increased by 0.55 mm after 36 months of lens wearing and further increased to 0.62 mm at the 37-month follow-up compared to the initial measurement. The differences in AL elongation per month between the 37-month time point and the 12-, 24-, and 36-month marks of lens wearing were found to be statistically significant (p12-month = 0.001; p24-month = 0.003; p36-month = 0.001). Following the cessation of lens wear for 1 month, there was no significant complete recovery observed in the flat and steep keratometry values. However, the intraocular pressure and anterior chamber depth returned to their baseline levels. CONCLUSIONS: The AL elongation undergoes alterations during temporary discontinuation of lenses, with the flat and steep keratometry measurements remaining significantly flatter compared to the baseline. However, the intraocular pressure and anterior chamber depth return to their initial levels after one month of lens cessation.


Assuntos
Comprimento Axial do Olho , Miopia , Adolescente , Humanos , Biometria , Córnea , Miopia/terapia , Estudos Prospectivos , Criança
16.
J Nanobiotechnology ; 21(1): 445, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001440

RESUMO

Tissue damage and aging lead to dysfunction, disfigurement, and trauma, posing significant global challenges. Creating a regenerative microenvironment to resist external stimuli and induce stem cell differentiation is essential. Plant-derived nanovesicles (PDNVs) are naturally bioactive lipid bilayer nanovesicles that contain proteins, lipids, ribonucleic acid, and metabolites. They have shown potential in promoting cell growth, migration, and differentiation into various types of tissues. With immunomodulatory, microbiota regulatory, antioxidant, and anti-aging bioactivities, PDNVs are valuable in resisting external stimuli and facilitating tissue repair. The unique structure of PDNVs provides an optimal platform for drug encapsulation, and surface modifications enhance their stability and specificity. Moreover, by employing synergistic administration strategies, PDNVs can maximize their therapeutic potential. This review summarized the progress and prospects of PDNVs as regenerative tools, provided insights into their selection for repair activities based on existing studies, considered the key challenge for clinical application, and anticipated their continued prominent role in the field of biomedicine.


Assuntos
Diferenciação Celular , Nanopartículas , Plantas , Plantas/química , Bicamadas Lipídicas
17.
Int J Nanomedicine ; 18: 4779-4804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635909

RESUMO

Tumors are the second-most common disease in the world, killing people at an alarming rate. As issues with drug resistance, lack of targeting, and severe side effects are revealed, there is a growing demand for precision-targeted drug delivery systems. Plant-derived nanovesicles (PDNVs), which arecomposed of proteins, lipids, RNA, and metabolites, are widely distributed and readily accessible. The potential for anti-proliferative, pro-apoptotic, and drug-resistant-reversing effects on tumor cells, as well as the ability to alter the tumor microenvironment (TME) by modulating tumor-specific immune cells, make PDNVs promising anti-tumor therapeutics. With a lipid bilayer structure that allows drug loading and a transmembrane capacity readily endocytosed by cells, PDNVs are also expected to become a new drug delivery platform. Exogenous modifications of PDNVs enhance their circulating stability, tumor targeting ability, high cell endocytosis rate, and controlled-release capacity. In this review, we summarize PDNVs' natural antitumor activity, as well as engineered PDNVs as efficient precision-targeted drug delivery tools that enhance therapeutic effects. Additionally, we discuss critical considerations related to the issues raised in this area, which will encourage researchers to improve PDNVs as better anti-tumor therapeutics for clinic applications.


Assuntos
Sistemas de Liberação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Endocitose
18.
Phys Chem Chem Phys ; 25(28): 19098-19105, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37427748

RESUMO

The small molecule built around the benzene ring, diacetyl phenylenediamine (DAPA), has attracted much attention due to its synthesis accessibility, large Stokes shift, etc. However, its meta structure m-DAPA does not fluoresce. In a previous investigation, it was found that such a property is due to the fact that it undergoes an energy-reasonable double proton transfer conical intersection during the deactivation of the S1 excited-state, then returns to the ground state by a nonradiative relaxation process eventually. However, our static electronic structure calculations and non-adiabatic dynamics analysis results indicate that only one reasonable non-adiabatic deactivation channel exists: after being excited to the S1 state, m-DAPA undergoes an ultrafast and barrierless ESIPT process and reaches the single-proton-transfer conical intersection. Subsequently, the system either returns to the keto-form S0 state minimum with proton reversion or returns to the single-proton-transfer S0 minimum after undergoing a slight twist of the acetyl group. The dynamics results show that the S1 excited-state lifetime of m-DAPA is 139 fs. In other words, we propose an efficient single-proton-transfer non-adiabatic deactivation channel of m-DAPA that is different from previous work, which can provide important mechanistic information of similar fluorescent materials.

19.
Front Psychiatry ; 14: 1209638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333916

RESUMO

Objective: Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder caused by a complex interaction between genetic and environmental risk factors. The balance between antioxidant capacity and oxidative stress (OS) induced free radicals may be crucial during the pathophysiological development of ASD. Methods: In this study, 96 children with ASD who met the diagnostic and statistical manual of mental disorders were collected, and the number of children in the typical development (TD) group was matched by 1:1. Digital PCR (dPCR) for telomere length (TL) expression in ASD in peripheral blood leukocytes. Urine levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) content were measured by tandem triple quadrupole mass spectrometry and corrected by urinary creatinine levels. The levels of superoxide dismutase (SOD), catalase (CAT), and capacity (AOC) were detected by kits. Results: The TL of the ASD group was shorter than the TD group (p < 0.01) and had some accurate predictive significance for the identification of ASD (AUC = 0.632, 95% CI: 0.533-0.710, p = 0.002). Both 8-OHdG content and SOD activity in the ASD group were significantly higher than those in the TD group (p < 0.05). Shortened TL (Monofactor: 2.20 (1.22, 3.96), p = 0.009; Multifactor: 2.22 (1.22, 4.00), p = 0.008) and reduced CAT activity (Monofactor: 2.31 (1.28, 4.17), p = 0.006; Multifactor: 2.31 (1.28, 4.18), p = 0.006) are risk factors for the development of ASD, while reduced 8-OHdG content (Monofactor: 0.29 (0.14, 0.60), p = 0.001; Multifactor: 0.27 (0.13, 0.57), p = 0.001) and reduced SOD activity (Monofactor: 0.55 (0.31, 0.98), p = 0.042; Multifactor: 0.54 (0.30, 0.98), p = 0.042) are protective factors for the development of ASD. Conclusion: In this study, TL and OS were significantly different between the ASD group and the TD group. As guanine-rich telomere sequences were likely damaged by oxygen free radicals, creating OS, which is a factor in the incidence and progression of ASDs. In conclusion, oxidative damage occurs in the bodies of children with ASD, which may lead to sustained disease progression and severe clinical manifestations. We assume that timely supplementation of antioxidants is very likely to be a potential treatment for early intervention in children with ASD. Identification and detection of OS-related biomarkers may contribute to early diagnosis and timely interventions in young patients with ASD.

20.
J Nanobiotechnology ; 21(1): 200, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344839

RESUMO

The emergence of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses significant challenges to global public health. Despite the extensive efforts of researchers worldwide, there remains considerable opportunities for improvement in timely diagnosis, specific treatment, and effective vaccines for SARS-CoV-2. This is due, in part, to the large number of asymptomatic carriers, rapid virus mutations, inconsistent confinement policies, untimely diagnosis and limited clear treatment plans. The emerging of nanozymes offers a promising approach for combating SARS-CoV-2 due to their stable physicochemical properties and high surface areas, which enable easier and multiple nano-bio interactions in vivo. Nanozymes inspire the development of sensitive and economic nanosensors for rapid detection, facilitate the development of specific medicines with minimal side effects for targeted therapy, trigger defensive mechanisms in the form of vaccines, and eliminate SARS-CoV-2 in the environment for prevention. In this review, we briefly present the limitations of existing countermeasures against coronavirus disease 2019 (COVID-19). We then reviewed the applications of nanozyme-based platforms in the fields of diagnostics, therapeutics and the prevention in COVID-19. Finally, we propose opportunities and challenges for the further development of nanozyme-based platforms for COVID-19. We expect that our review will provide valuable insights into the new emerging and re-emerging infectious pandemic from the perspective of nanozymes.


Assuntos
COVID-19 , Vacinas , Humanos , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Pandemias/prevenção & controle , Teste para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...