Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 629
Filtrar
1.
Cerebrovasc Dis ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38964297

RESUMO

BACKGROUND: The effectiveness of thromboelastography (TEG)-guided antiplatelet therapy in patients with ischemic cerebrocardiovascular diseases is not well-established. This systematic review evaluates the efficacy and safety of TEG-guided antiplatelet therapy compared to standard treatment in patients with ischemic cerebrocardiovascular diseases. METHODS: Randomized controlled trials (RCTs) and observational studies comparing TEG-guided antiplatelet therapy with standard therapy in patients suffering from ischemic stroke (IS) or coronary artery disease (CAD) were identified. The primary efficacy measure was a composite of ischemic and hemorrhagic events. Secondary efficacy measures included any ischemic events, while safety was assessed by the occurrence of bleeding events. RESULTS: 10 studies involving 4 RCTs and 6 observational studies with a total of 1,678 patients were included. When considering a composite of ischemic and hemorrhagic events in RCTs, a significant reduction was observed in IS or CAD patients under TEG-guided therapy compared to standard therapy (OR 0.45, 95% CI 0.27 to 0.75, P=0.002). After pooling RCTs and observational studies together, compared to standard antiplatelet therapy, TEG-guided therapy significantly reduced the risk of a composite of ischemic and hemorrhagic events (OR 0.26, 95% CI 0.19 to 0.37; P<0.00001), ischemic events (OR 0.28, 95% CI 0.19 to 0.41; P<0.00001), and bleeding events (OR 0.31, 95% CI 0.16 to 0.62; P=0.0009) in patients with IS or CAD. CONCLUSIONS: TEG-guided antiplatelet therapy appears to be both effective and safe for patients with IS or CAD. These findings support the use of TEG testing to tailor antiplatelet therapy in individuals with ischemic cerebrocardiovascular diseases.

2.
J Anim Sci Biotechnol ; 15(1): 95, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972969

RESUMO

BACKGROUND: At present, heat stress (HS) has become a key factor that impairs broiler breeding industry, which causes growth restriction and poor meat quality of broilers. Selenium (Se) is an excellent antioxidant and plays a unique role in meat quality improvement. Recent years, nano-selenium (NanoSe) has received tremendous attention in livestock production, due to its characteristic and good antibacterial performance in vitro. Here, we developed the heat stressed-broiler model to investigate the protective effects of NanoSe on growth performance and meat quality of broilers and compare whether there are differences with that of other Se sources (Sodium selenite, SS; Selenoyeast, SeY; Selenomethionine, SeMet). RESULTS: HS jeopardized the growth performance and caused poor meat quality of breast muscle in broilers, which were accompanied by lowered antioxidant capacity, increased glycolysis, increased anaerobic metabolism of pyruvate, mitochondrial stress and abnormal mitochondrial tricarboxylic acid (TCA) cycle. All Se sources supplementation exhibited protective effects, which increased the Se concentration and promoted the expression of selenoproteins, improved the mitochondrial homeostasis and the antioxidant capacity, and promoted the TCA cycle and the aerobic metabolism of pyruvate, thus improved the breast muscle meat quality of broilers exposed to HS. However, unlike the other three Se sources, the protective effect of NanoSe on meat quality of heat stressed-broilers was not ideal, which exhibited limited impact on the pH value, drip loss and cooking loss of the breast muscle. Compared with the other Se sources, broilers received NanoSe showed the lowest levels of slow MyHC, the highest levels of fast MyHC and glycogen, the highest mRNA levels of glycolysis-related genes (PFKM and PKM), the highest protein expression of HSP60 and CLPP, and the lowest enzyme activities of GSH-Px, citroyl synthetase (CS) and isocitrate dehydrogenase (ICD) in breast muscle. Consistent with the SS, the Se deposition in breast muscle of broilers received NanoSe was lower than that of broilers received SeY or SeMet. Besides, the regulatory efficiency of NanoSe on the expression of key selenoproteins (such as SELENOS) in breast muscle of heat stressed-broilers was also worse than that of other Se sources. CONCLUSION: Through comparing the meat quality, Se deposition, muscle fiber type conversion, glycolysis, mitochondrial homeostasis, and mitochondrial TCA cycle-related indicators of breast muscle in heat stressed broilers, we found that the protective effects of organic Se (SeY and SeMet) are better than that of inorganic Se (SS) and NanoSe. As a new Se source, though NanoSe showed some protective effect on breast muscle meat quality of heat stressed broilers, the protective effect of NanoSe is not ideal, compared with other Se sources.

3.
J Ethnopharmacol ; 333: 118500, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944359

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: African wormwood (Artemisia afra Jacq. ex Willd.) has been used traditionally in southern Africa to treat illnesses causing fever and was recently shown to possess anti-tuberculosis activity. As tuberculosis is an endemic cause of fever in southern Africa, this suggests that the anti-tubercular activity of A. afra may have contributed to its traditional medicinal use. AIM OF THE STUDY: Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a deadly and debilitating disease globally affecting millions annually. Emerging drug-resistant Mtb strains endanger the efficacy of the current therapies employed to treat tuberculosis; therefore, there is an urgent need to develop novel drugs to combat this disease. Given the reported activity of A. afra against Mtb, we sought to determine the mechanisms by which A. afra inhibits and kills this bacterium. MATERIALS AND METHODS: We used transcriptomics to investigate the impact of Artemisia spp. extracts on Mtb physiology. We then used chromatographic fractionation and biochemometric analyses to identify a bioactive fractions of A. afra extracts and identify an active compound. RESULTS: Transcriptomic analysis revealed that A. afra exerts different effects on Mtb compared to A. annua or artemisinin, suggesting that A. afra possesses other phytochemicals with unique modes of action. A biochemometric study of A. afra resulted in the isolation of an O-methylflavone (1), 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)chromen-4-one, which displayed considerable activity against Mtb strain mc26230 in both log phase growth and metabolically downshifted hypoxic cultures. CONCLUSIONS: The present study demonstrated that an O-methylflavone constituent of Artemisia afra explains part of the activity of this plant against Mtb. This result contributes to a mechanistic understanding of the reported anti-tubercular activity of A. afra and highlights the need for further study of this traditional medicinal plant and its active compounds.

4.
Front Mol Biosci ; 11: 1268019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903180

RESUMO

Skeletal diseases impose a considerable burden on society. The clinical and tissue-engineering therapies applied to alleviate such diseases frequently result in complications and are inadequately effective. Research has shifted from conventional therapies based on mesenchymal stem cells (MSCs) to exosomes derived from MSCs. Exosomes are natural nanocarriers of endogenous DNA, RNA, proteins, and lipids and have a low immune clearance rate and good barrier penetration and allow targeted delivery of therapeutics. MSC-derived exosomes (MSC-exosomes) have the characteristics of both MSCs and exosomes, and so they can have both immunosuppressive and tissue-regenerative effects. Despite advances in our knowledge of MSC-exosomes, their regulatory mechanisms and functionalities are unclear. Here we review the therapeutic potential of MSC-exosomes for skeletal diseases.

5.
Open Life Sci ; 19(1): 20220795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867921

RESUMO

Drug testing has many test elements. It aims to prevent unqualified drugs from entering the market and ensure drug safety. The existing artificial intelligence (AI) online monitoring system identifies active ingredients in the process of use. Owing to their openness, data are easy to be lost, failing to meet user needs and inducing a specific impact on the use of the monitoring system. With the continuous development of computer and measurement technologies, various biochemical data are increasing at an unprecedented speed, and numerous databases are emerging. Extracting patterns from considerable known data and experimental facts is an essential task for a wide range of biological and chemical workers. Pattern recognition is one of the essential technologies for data mining. It is widely used in industry, agriculture, national defense, biomedicine, meteorology, astronomy, and other fields. To improve the effect of the online drug ingredient recognition system, this study used AI to design an online drug ingredient recognition-embedded monitoring system and applied AI to the teaching field to improve teaching efficiency. First, this study constructed the framework of the AI online drug ingredient recognition-embedded monitoring system and introduced the process of online drug ingredient recognition. Then, it introduced the pattern recognition method, constructed the pattern recognition system, and presented the pattern recognition algorithm and the algorithm evaluation index. Afterward, it used pattern recognition to conduct a qualitative analysis of the infrared spectrum of drug components and introduced the overall process of the qualitative analysis. In addition, this study employed AI to implement changes to the embedded system instruction in colleges and universities, summarizing the current issues. The impact of drug component recognition and the educational impact of embedded systems were investigated in the experimental portion. The experimental findings demonstrated the excellent accuracy, sensitivity, specificity, and Matthew correlation coefficient of the online drug component recognition-integrated monitoring system in this work. Compared with that of other systems, its average drug component recognition accuracy was above 0.85. Students in five majors reported high levels of satisfaction with the embedded system teaching, which is better for delivering college instruction.

6.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931754

RESUMO

Electromyography-based gesture recognition has become a challenging problem in the decoding of fine hand movements. Recent research has focused on improving the accuracy of gesture recognition by increasing the complexity of network models. However, training a complex model necessitates a significant amount of data, thereby escalating both user burden and computational costs. Moreover, owing to the considerable variability of surface electromyography (sEMG) signals across different users, conventional machine learning approaches reliant on a single feature fail to meet the demand for precise gesture recognition tailored to individual users. Therefore, to solve the problems of large computational cost and poor cross-user pattern recognition performance, we propose a feature selection method that combines mutual information, principal component analysis and the Pearson correlation coefficient (MPP). This method can filter out the optimal subset of features that match a specific user while combining with an SVM classifier to accurately and efficiently recognize the user's gesture movements. To validate the effectiveness of the above method, we designed an experiment including five gesture actions. The experimental results show that compared to the classification accuracy obtained using a single feature, we achieved an improvement of about 5% with the optimally selected feature as the input to any of the classifiers. This study provides an effective guarantee for user-specific fine hand movement decoding based on sEMG signals.


Assuntos
Eletromiografia , Antebraço , Gestos , Mãos , Reconhecimento Automatizado de Padrão , Humanos , Eletromiografia/métodos , Mãos/fisiologia , Antebraço/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Masculino , Adulto , Análise de Componente Principal , Feminino , Algoritmos , Movimento/fisiologia , Adulto Jovem , Máquina de Vetores de Suporte , Aprendizado de Máquina
7.
Elife ; 122024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913071

RESUMO

Metabolic disorders are highly prevalent in modern society. Exercise mimetics are defined as pharmacological compounds that can produce the beneficial effects of fitness. Recently, there has been increased interest in the role of eugenol and transient receptor potential vanilloid 1 (TRPV1) in improving metabolic health. The aim of this study was to investigate whether eugenol acts as an exercise mimetic by activating TRPV1. Here, we showed that eugenol improved endurance capacity, caused the conversion of fast-to-slow muscle fibers, and promoted white fat browning and lipolysis in mice. Mechanistically, eugenol promoted muscle fiber-type transformation by activating TRPV1-mediated CaN signaling pathway. Subsequently, we identified IL-15 as a myokine that is regulated by the CaN/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Moreover, we found that TRPV1-mediated CaN/NFATc1 signaling, activated by eugenol, controlled IL-15 levels in C2C12 myotubes. Our results suggest that eugenol may act as an exercise mimetic to improve metabolic health via activating the TRPV1-mediated CaN signaling pathway.


Assuntos
Eugenol , Interleucina-15 , Fibras Musculares Esqueléticas , Fatores de Transcrição NFATC , Condicionamento Físico Animal , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Animais , Interleucina-15/metabolismo , Eugenol/farmacologia , Eugenol/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Miocinas
8.
J Physiol Biochem ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698251

RESUMO

Exosomes are small extracellular vesicles secreted by almost all cell types, and carry diverse cargo including RNA, and other substances. Recent studies have focused exosomal microRNAs (miRNAs) on various human diseases, including type 2 diabetes mellitus (T2DM) and metabolic syndrome (METS) which accompany the occurrence of insulin resistance. The regulation of insulin signaling has connected with some miRNA expression which play a significant regulatory character in insulin targeted cells or organs, such as fat, muscle, and liver. The miRNAs carried by exosomes, through the circulation in the body fluids, mediate all kinds of physiological and pathological process involved in the human body. Studies have found that exosome derived miRNAs are abnormally expressed and cross-talked with insulin targeted cells or organs to affect insulin pathways. Further investigations of the mechanisms of exosomal miRNAs in T2DM will be valuable for the diagnostic biomarkers and therapeutic targets of T2DM. This review will summarize the molecular mechanism of action of the miRNAs carried by exosomes which are secreted from insulin signaling related cells, and elucidate the pathogenesis of insulin resistance to provide a new strategy for the potential diagnostic biomarkers and therapeutic targets for the type 2 diabetes.

9.
Curr Microbiol ; 81(6): 164, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710854

RESUMO

Edible bird's nest (EBN), a most highly priced and valuable foodstuff, contains high percentage of proteins and carbohydrates. However, proteins adhering to these carbohydrates make the EBN hard and tough, which need to be boiled as the bird's nest soup to make the Chinese cuisine. To overcome the hard and tough texture of EBN and improve the digestion degrees, the present study screened and identified a probiotic strain Bacillus amyloliquefaciens YZW02 from 5-year stored EBN sample completely solubilizing EBN for the first time. The 24-h B. amyloliquefaciens fermented EBN contained 20.30-21.48 mg/mL of the soluble protein contents with a recovery rate of 98-100%, DPPH radical scavenging rate of 84.76% and ABTS radical scavenging capacity of 41.05%. The mixed fermentation of B. amyloliquefaciens YZW02 and Bacillus natto BN1 were further applied to improve the low-MW peptide percentages and antioxidant activities. The mixed-fermentation of B. natto BN1 with 4-h cultured B. amyloliquefaciens YZW02 had the lowest percentage (82.23%) of >12-kDa proteins/peptides and highest percentages of 3-12 kDa, 1-3 kDa and 0.1-1 kDa peptides of 8.6% ± 0.08, 7.57% ± 0.09, 1.77% ± 0.05 and 0.73% ± 0.05, with the highest DPPH, ABTS and •OH scavenging capacity of 90.23%, 46.45% and 49.12%, respectively. These findings would provide an efficient strategy for improving the solubility and antioxidant activities of EBNs.


Assuntos
Antioxidantes , Bacillus amyloliquefaciens , Aves , Fermentação , Probióticos , Solubilidade , Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Animais , Probióticos/química , Probióticos/metabolismo , Aves/microbiologia
10.
Anim Sci J ; 95(1): e13953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783533

RESUMO

The safety of Jatropha curcas L. cake (JCC) in animal feed remains under scrutiny, despite the advent of low phorbol ester (PE) variants. This study investigates the impact of low PE JCC on swine health when used as a protein feed. Pigs were fed a 5% JCC diet with a PE concentration of 0.98 mg/kg, which surprisingly still induced toxicity. Symptoms included depression, decreased food intake, increased diarrhea, along with hypothalamus and colon lesions. The toxicity was associated with a decrease in antioxidant enzymes, an increase in inflammatory cytokines in the hypothalamus, plasma, and colon, and a rise in pro-inflammatory colon microbes and metabolites. Disturbances in neurotransmitters further suggest that this toxicity is related to disruption of the microbiota-gut-brain axis, indicating that JCC's toxic elements are not solely due to PE. The sensitivity of pigs to JCC underscores the need for thorough detoxification prior to its use as feed. These findings significantly contribute to the discourse on the safety of low PE JCC in animal feed, highlighting implications for both the feed industry and public health.


Assuntos
Ração Animal , Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Jatropha , Ésteres de Forbol , Animais , Suínos , Ésteres de Forbol/efeitos adversos , Eixo Encéfalo-Intestino/fisiologia , Dieta/veterinária , Ingestão de Alimentos , Citocinas/metabolismo , Colo/metabolismo , Hipotálamo/metabolismo , Depressão/metabolismo , Neurotransmissores/metabolismo
11.
Sensors (Basel) ; 24(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38794079

RESUMO

Modular control of the muscle, which is called muscle synergy, simplifies control of the movement by the central nervous system. The purpose of this study was to explore the synergy in both the frequency and movement domains based on the non-negative Tucker decomposition (NTD) method. Surface electromyography (sEMG) data of 8 upper limb muscles in 10 healthy subjects under wrist flexion (WF) and wrist extension (WE) were recorded. NTD was selected for exploring the multi-domain muscle synergy from the sEMG data. The results showed two synergistic flexor pairs, Palmaris longus-Flexor Digitorum Superficialis (PL-FDS) and Extensor Carpi Radialis-Flexor Carpi Radialis (ECR-FCR), in the WF stage. Their spectral components are mainly in the respective bands 0-20 Hz and 25-50 Hz. And the spectral components of two extensor pairs, Extensor Digitorum-Extensor Carpi Ulnar (ED-ECU) and Extensor Carpi Radialis-Brachioradialis (ECR-B), are mainly in the respective bands 0-20 Hz and 7-45 Hz in the WE stage. Additionally, further analysis showed that the Biceps Brachii (BB) muscle was a shared muscle synergy module of the WE and WF stage, while the flexor muscles FCR, PL and FDS were the specific synergy modules of the WF stage, and the extensor muscles ED, ECU, ECR and B were the specific synergy modules of the WE stage. This study showed that NTD is a meaningful method to explore the multi-domain synergistic characteristics of multi-channel sEMG signals. The results can help us to better understand the frequency features of muscle synergy and shared and specific synergies, and expand the study perspective related to motor control in the nervous system.


Assuntos
Eletromiografia , Movimento , Músculo Esquelético , Punho , Humanos , Músculo Esquelético/fisiologia , Masculino , Punho/fisiologia , Adulto , Movimento/fisiologia , Feminino , Adulto Jovem , Processamento de Sinais Assistido por Computador
12.
Pharmaceutics ; 16(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38794259

RESUMO

Peptides with antimicrobial activity or protease inhibitory activity are potential candidates to supplement traditional antibiotics or cancer chemotherapies. However, the potential of many peptides are limited by drawbacks such as cytotoxicity or susceptibility to hydrolysis. Therefore, strategies to modify the structure of promising peptides may represent an effective approach for developing more promising clinical candidates. In this study, the mature peptide OSTI-1949, a Kunitz-type inhibitor from Odorrana schmackeri, and four designed analogues were successfully synthesised. In contrast to the parent peptide, the analogues showed impressive multi-functionality including antimicrobial, anticancer, and trypsin inhibitory activities. In terms of safety, there were no obvious changes observed in the haemolytic activity at the highest tested concentration, and the analogue OSTI-2461 showed an increase in activity against cancer cell lines without cytotoxicity to normal cells (HaCaT). In summary, through structural modification of a natural Kunitz-type peptide, the biological activity of analogues was improved whilst retaining low cytotoxicity. The strategy of helicity enhancement by forming an artificial α-helix and ß-sheet structure provides a promising way to develop original bioactive peptides for clinical therapeutics.

13.
Chem Biol Drug Des ; 103(4): e14513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570322

RESUMO

Taxol (paclitaxel) is the first approved microtubule-stabilizing agent (MSA) by binding stoichiometrically to tubulin, which is considered to be one of the most significant advances in first-line chemotherapy against diverse tumors. However, a large number of residue missence mutations harboring in the tubulin have been observed to cause acquired drug resistance, largely limiting the clinical application of Taxol and its analogs in chemotherapy. A systematic investigation of the intermolecular interactions between the Taxol and various tubulin mutants would help to establish a comprehensive picture of drug response to tubulin mutations in clinical treatment of cancer, and to design new MSA agents with high potency and selectivity to overcome drug resistance. In this study, we described an integration of in silico analysis and in vitro assay (iSiV) to profile Taxol against a panel of 149 clinically observed, cancer-associated missence mutations in ß-tubulin at molecular and cellular levels, aiming to a systematic understanding of molecular mechanism and biological implication underlying drug resistance and sensitivity conferring from tubulin mutations. It is revealed that the Taxol-resistant mutations can be classified into three types: (I) nonbonded interaction broken due to mutation, (II) steric hindrance caused by mutation, and (III) conformational change upon mutation. In addition, we identified three new Taxol-resistant mutations (C239Y, T274I, and R320P) that can largely reduce the binding affinity of Taxol to tubulin at molecular level, in which the T274I and R320P were observed to considerably impair the antitumor activity of Taxol at cellular level. Moreover, a novel drug-susceptible mutation (M363T) was also identified, which improves Taxol affinity by 2.6-fold and decreases Taxol antitumor EC50 values from 29.4 to 18.7 µM.


Assuntos
Paclitaxel , Tubulina (Proteína) , Paclitaxel/farmacologia , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Mutação , Resistência a Medicamentos
14.
Arch Gerontol Geriatr ; 123: 105424, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38565071

RESUMO

BACKGROUND: Lipid metabolism disorders appear to play an important role in the ageing process, thus understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to lipid metabolism related diseases is crucial towards promoting quality of life in old age. MicroRNAs (miRNAs) have emerged as crucial regulators of lipid metabolism, and some miRNAs have key roles in ageing. METHODS: In this study, we investigated changes in liver lipid metabolism of ageing mice and the mechanisms of the altered expression of miRNAs in the ageing liver which contributes to the age-dependent increase in lipid synthesis. Here we found that miR-743b-3p was higher expressed in the liver tissues of ageing mice through the small RNA sequencing and bioinformatics analysis, and its target PPM1K was predicted and confirmed the target relationship of miR-743b-3p with PPM1K in the aged mouse liver tissues and the cultured senescent hepatocytes in vitro. Moreover, using the transfected miR-743b-3p mimics/inhibitors into the senescent hepatocyte AML12. RESULTS: We found that miR-743b-3p inhibition reversed the hepatocyte senescence, and finally decreased the expression of genes involved in lipid synthesis(Chrebp, Fabp4, Acly and Pparγ) through increasing the target gene expression of PPM1K which regulated the expression of branched-chain amino acids (BCAA) metabolism-related genes (Bckdhα, Bckdk, Bcat2, Dbt). CONCLUSIONS: These results identify that age-induced expression of miR-743b-3p inhibits its target PPM1K which induces BCAA metabolic disorder and regulates hepatocyte lipid accumulation during ageing.


Assuntos
Envelhecimento , Aminoácidos de Cadeia Ramificada , Lipogênese , Fígado , MicroRNAs , Animais , Masculino , Camundongos , Envelhecimento/metabolismo , Envelhecimento/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Senescência Celular , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo
15.
J Food Sci ; 89(6): 3788-3801, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638069

RESUMO

The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.


Assuntos
Ácido Butírico , Microbioma Gastrointestinal , Extrato de Sementes de Uva , Camundongos Endogâmicos BALB C , Proantocianidinas , Animais , Proantocianidinas/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Camundongos , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Ceco/microbiologia , Ceco/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/classificação
16.
Med Sci Monit ; 30: e942836, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632864

RESUMO

BACKGROUND Patients with urolithiasis often undergo transurethral ureteroscopic holmium laser lithotripsy, a procedure that can be affected by perioperative thermal management. This study examines the impact of compound thermal insulation management on patient recovery and comfort during transurethral ureteroscopic holmium laser lithotripsy. MATERIAL AND METHODS In this study, 551 patients who underwent transurethral ureteroscopic holmium laser lithotripsy from April 2019 to December 2022 were randomly assigned to either an observation group (n=276) or control group (n=275). Both groups received routine surgical care, with the observation group additionally receiving compound thermal insulation management. We recorded and compared perioperative body temperature changes, anesthetic resuscitation indicators (bispectral index recovery time, extubation time, fully awake time, Postanesthesia Care Unit retention time), comfort level (General Comfort Questionnaire), and quality of life (Nottingham Health Profile). We also compared the incidence of complications. RESULTS There was no significant difference in body temperature between groups at the start surgery. However, the observation group showed significantly higher temperatures during and at the end of surgery. Anesthetic resuscitation indicators were significantly better in the observation group. Both groups showed improved comfort and quality of life after surgery, with more significant improvements in the observation group. The observation group also had a lower incidence of complications, such as hypothermia and rigor. CONCLUSIONS Compound thermal insulation management during transurethral ureteroscopic holmium laser lithotripsy improved perioperative temperature maintenance, accelerated postoperative recovery, reduced complication rates, and enhanced patient comfort and quality of life.


Assuntos
Anestésicos , Lasers de Estado Sólido , Litotripsia a Laser , Litotripsia , Humanos , Litotripsia a Laser/métodos , Hólmio , Qualidade de Vida , Ureteroscopia/métodos
17.
Curr Med Chem ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685774

RESUMO

BACKGROUND: MiR-136-5p plays a vital function in regulating developmental processes as well as in the pathophysiology of diseases, with a notable record in tumor suppression. METHODS: This article summarizes the latest findings on the physiological and pathophysiological processes of miR-136-5p in diseases. We searched for relevant studies and selected research articles from the last five years on PubMed with miR-136-5p as the keyword. RESULTS: MiR-136-5p represents a class of microRNAs (miRNAs) that are involved in various human maladies, encompassing cancers, cardio-cerebrovascular disease, diabetes, inflammatory disease, tuberous sclerosis, idiopathic pulmonary fibrosis, and polycystic ovary syndrome. Altered expression of miR-136-5p in specific ailments results in downstream gene expression imbalance, influencing cellular behaviors, such as migration, proliferation, and invasion. Furthermore, miR-136-5p is implicated in five signaling pathways, where it is critical in the onset and advancement of a number of illnesses. Additionally, it has the potential to promote drug resistance to a variety of medications. CONCLUSION: The current review aims to elucidate the role of miR-136-5p in both cancer progression and non-cancerous disorders, emphasizing dysregulated signaling pathways. It also sheds light on the potential of this miRNA as a prognostic biomarker in cancer, offering valuable insights and directions for future research.

18.
Cell Mol Immunol ; 21(6): 604-619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689020

RESUMO

Autoreactive CD8+ T cells play a key role in type 1 diabetes (T1D), but the antigen spectrum that activates autoreactive CD8+ T cells remains unclear. Endoplasmic reticulum stress (ERS) has been implicated in ß-cell autoantigen generation. Here, we analyzed the major histocompatibility complex class I (MHC-I)-associated immunopeptidome (MIP) of islet ß-cells under steady and ERS conditions and found that ERS reshaped the MIP of ß-cells and promoted the MHC-I presentation of a panel of conventional self-peptides. Among them, OTUB258-66 showed immunodominance, and the corresponding autoreactive CD8+ T cells were diabetogenic in nonobese diabetic (NOD) mice. High glucose intake upregulated pancreatic OTUB2 expression and amplified the OTUB258-66-specific CD8+ T-cell response in NOD mice. Repeated OTUB258-66 administration significantly reduced the incidence of T1D in NOD mice. Interestingly, peripheral blood mononuclear cells (PBMCs) from patients with T1D, but not from healthy controls, showed a positive IFN-γ response to human OTUB2 peptides. This study provides not only a new explanation for the role of ERS in promoting ß-cell-targeted autoimmunity but also a potential target for the prevention and treatment of T1D. The data are available via ProteomeXchange with the identifier PXD041227.


Assuntos
Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1 , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina , Camundongos Endogâmicos NOD , Animais , Diabetes Mellitus Tipo 1/imunologia , Humanos , Linfócitos T CD8-Positivos/imunologia , Estresse do Retículo Endoplasmático/imunologia , Camundongos , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Feminino , Autoantígenos/imunologia , Peptídeos/imunologia , Peptídeos/farmacologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-38648292

RESUMO

Given the escalating global crisis in feed protein availability, Jatropha curcas L. cake has attracted significant interest as a viable alternative protein source in animal feed. This experiment was conducted to investigate the effects of fermented Jatropha curcas L. cake (FJCC) as a protein feed in the diet of pigs. A total of 96 growing pigs with an average weight of 27.60 ± 1.59 kg were divided into three dietary groups with varying FJCC inclusion levels (0, 2.5, and 5%) for a 28 d trial. Results showed that the diet with 5% FJCC (FJCC5) demonstrated significant improvements in average daily gain (p = 0.009), feed-to-gain ratio (p = 0.036), nutrient digestibility, and intestinal morphology. Furthermore, the FJCC5 diet resulted in a decrease in pH values in different gut sections (jejunum p = 0.045, cecum p = 0.001, colon p = 0.012), and favorably altered the profile of short-chain fatty acids (SCFAs) with increased butyric acid content (p = 0.005) and total SCFAs (p = 0.019). Additionally, this diet notably decreased IL-6 levels in the jejunum (p = 0.008) and colon (=0.047), significantly reduced IL-1 levels in the hypothalamus (p < 0.001), and lowered IL-1, IL-6, and IL-10 levels in plasma (p < 0.05). Microbiota and metabolite profile analysis revealed an elevated abundance of beneficial microbes (p < 0.05) and key metabolites such as 4-aminobutyric acid (GABA) (p = 0.003) and serotonin (5-HT) (p = 0.022), linked to neuroactive ligand-receptor interaction. Moreover, FJCC5 significantly boosted circulating neurotransmitter levels of 5-HT (p = 0.006) and GABA (p = 0.002) in plasma and hypothalamus, with corresponding increases in precursor amino acids (p < 0.05). These findings suggest that FJCC, particularly at a 5% inclusion rate, can be an effective substitute for traditional protein sources like soybean meal, offering benefits beyond growth enhancement to gut health and potentially impacting the gut-brain axis. This research underscores FJCC's potential as a valuable component in sustainable animal nutrition strategies.

20.
Plast Reconstr Surg Glob Open ; 12(3): e5634, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435463

RESUMO

Background: The demand for genital plastic surgery has increased dramatically among female patients globally. Although various labia minora reduction procedures have been applied with different indications, advantages, and disadvantages, none has been universally accepted as the best method. So, we presented an innovative strategy for this increasingly demanded reconstructive procedure. Methods: In this retrospective study, we included 29 patients seen between November 2020 and May 2023 with hypertrophic labia minora. The patients with hypertrophic labia minora after serrated-shaped resection were included for analysis. Patient satisfaction and complications were evaluated through the follow-up after the operation. Results: Patients with a mean age of 27.1 years (range 19-47 y) performed labia minora reduction via serrated-shaped resection. One patient experienced incision dehiscence, requiring additional surgical revision. One patient experienced postoperative cosmetic asymmetry and also performed secondary repair surgery. One patient experienced urinary retention, which was relieved after urinary catheterization. High overall patient satisfaction has been achieved after a median follow-up of 6.7 months (range 1-24 months). No flap necrosis, sexual dysfunction, or hypertrophic scarring has been reported. Conclusions: Results suggested that serrated-shaped resection is a novel technique for repairing hypertrophic labia minora with high efficiency and satisfaction. The procedure could effectively improve the appearance of the labia minora and reduce complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...