Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Immunology ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38148520

RESUMO

Thymic stromal lymphopoietin (TSLP) is a primarily epithelial-derived cytokine that drives type 2 allergic immune responses. Early life viral respiratory infections elicit high TSLP production, which leads to the development of type 2 inflammation and airway hyperreactivity. The goal of this study was to examine in vivo and in vitro the human airway epithelial responses leading to high TSLP production during viral respiratory infections in early infancy. A total of 129 infants (<1-24 m, median age 10 m) with severe viral respiratory infections were enrolled for in vivo (n = 113), and in vitro studies (n = 16). Infants were classified as 'high TSLP' or 'low TSLP' for values above or below the 50th percentile. High versus low TSLP groups were compared in terms of type I-III IFN responses and production of chemokines promoting antiviral (CXCL10), neutrophilic (CXCL1, CXCL5, CXCL8), and type 2 responses (CCL11, CCL17, CCL22). Human infant airway epithelial cell (AEC) cultures were used to define the transcriptomic (RNAseq) profile leading to high versus low TSLP responses in vitro in the absence (baseline) or presence (stimulated) of a viral mimic (poly I:C). Infants in the high TSLP group had greater in vivo type III IFN airway production (median type III IFN in high TSLP 183.2 pg/mL vs. 63.4 pg/mL in low TSLP group, p = 0.007) and increased in vitro type I-III IFN AEC responses after stimulation with a viral mimic (poly I:C). At baseline, our RNAseq data showed that infants in the high TSLP group had significant upregulation of IFN signature genes (e.g., IFIT2, IFI6, MX1) and pro-inflammatory chemokine genes before stimulation. Infants in the high TSLP group also showed a baseline AEC pro-inflammatory state characterized by increased production of all the chemokines assayed (e.g., CXCL10, CXCL8). High TSLP responses in the human infant airways are associated with pre-activated airway epithelial IFN antiviral immunity and increased baseline AEC production of pro-inflammatory chemokines. These findings present a new paradigm underlying the production of TSLP in the human infant airway epithelium following early life viral exposure and shed light on the long-term impact of viral respiratory illnesses during early infancy and beyond childhood.

3.
Paediatr Respir Rev ; 38: 2-8, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33812796

RESUMO

The respiratory epithelium is one of the primary interfaces between the body's immune system and the external environment. This review discusses the innate and adaptive immunomodulatory effects of the respiratory epithelium, highlighting the physiologic immune responses associated with health and the disease-causing sequelae when these physiologic responses go awry. Airway macrophages, dendritic cells, and innate lymphoid cells are discussed as orchestrators of physiological and pathological innate immune responses and T cells, B cells, mast cells, and granulocytes (eosinophils and neutrophils) as orchestrators of physiologic and pathologic adaptive immune responses. The interplay between the airway epithelium and the varied immune cells as well as the interplay between these immune cells is discussed, highlighting the importance of the dose of noxious stimuli and pathogens in immune programming and the timing of their interaction with the immune cells that determine the pattern of immune responses. Although each cell type has been researched individually, this review highlights the need for simultaneous temporal investigation of immune responses from these varied cells to noxious stimuli and pathogens.


Assuntos
Asma , Imunidade Inata , Epitélio , Humanos , Linfócitos , Mucosa Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...